Esempio n. 1
0
# > set.seed(123)
# > abc <- rnorm(50, 5, 1)
abc = np.array([
    4.439524, 4.769823, 6.558708, 5.070508, 5.129288, 6.715065, 5.460916,
    3.734939, 4.313147, 4.554338, 6.224082, 5.359814, 5.400771, 5.110683,
    4.444159, 6.786913, 5.497850, 3.033383, 5.701356, 4.527209, 3.932176,
    4.782025, 3.973996, 4.271109, 4.374961, 3.313307, 5.837787, 5.153373,
    3.861863, 6.253815, 5.426464, 4.704929, 5.895126, 5.878133, 5.821581,
    5.688640, 5.553918, 4.938088, 4.694037, 4.619529, 4.305293, 4.792083,
    3.734604, 7.168956, 6.207962, 3.876891, 4.597115, 4.533345, 5.779965,
    4.916631
])

wineind = load_wineind()
lynx = load_lynx()


def test_basic_arima():
    arima = ARIMA(order=(0, 0, 0), trend='c', suppress_warnings=True)
    preds = arima.fit_predict(y)  # fit/predict for coverage

    # test some of the attrs
    assert_almost_equal(arima.aic(), 11.201308403566909, decimal=5)
    assert_almost_equal(arima.aicc(), 11.74676, decimal=5)
    assert_almost_equal(arima.bic(), 13.639060053303311, decimal=5)

    # get predictions
    expected_preds = np.array([
        0.44079876, 0.44079876, 0.44079876, 0.44079876, 0.44079876, 0.44079876,
        0.44079876, 0.44079876, 0.44079876, 0.44079876
Esempio n. 2
0
.. raw:: html

   <br/>
"""
print(__doc__)

# Author: Taylor Smith <*****@*****.**>

from pyramid.datasets import load_lynx
from pyramid.arima import auto_arima
import matplotlib.pyplot as plt
import numpy as np

# #############################################################################
# Load the data and split it into separate pieces
data = load_lynx()
train, test = data[:100], data[100:]

# #############################################################################
# Fit with some validation (cv) samples
arima = auto_arima(train,
                   start_p=1,
                   start_q=1,
                   d=0,
                   max_p=5,
                   max_q=5,
                   out_of_sample_size=10,
                   suppress_warnings=True,
                   stepwise=True,
                   error_action='ignore')
    error_action='ignore',  # don't want to know if an order does not work
    suppress_warnings=True,  # don't want convergence warnings
    stepwise=True)  # set to stepwise

stepwise_fit.summary()

from pyramid.arima import auto_arima
from pyramid.datasets import load_lynx
import numpy as np

# For serialization:
from sklearn.externals import joblib
import pickle

# Load data and fit a model
y = load_lynx()
arima = auto_arima(y, seasonal=True)

# Serialize with Pickle
with open('arima.pkl', 'wb') as pkl:
    pickle.dump(arima, pkl)

# You can still make predictions from the model at this point
arima.predict(n_periods=5)

# Now read it back and make a prediction
with open('arima.pkl', 'rb') as pkl:
    pickle_preds = pickle.load(pkl).predict(n_periods=5)

# Or maybe joblib tickles your fancy
joblib.dump(arima, 'arima.pkl')