Esempio n. 1
0
 def test_copy_fit_2d(self):
     x = 2 * np.pi * np.random.random_sample((20, 2))
     y = func_2d(x)
     eta = 1e-3
     for kernel in kernels_dict.values():
         k = kernel(2)
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t, eta)
                 model.fit(x, y)
                 copy_model = model.copy()
                 assert np.allclose(copy_model._X, model._X)
                 assert np.allclose(copy_model._y, model._y)
                 assert copy_model._eta == model._eta
                 assert isinstance(copy_model._kernel,
                                   model._kernel.__class__)
                 assert copy_model._kernel.param == model._kernel.param
                 assert isinstance(copy_model._tail, model._tail.__class__)
                 assert np.all(
                     copy_model._tail.params == model._tail.params)
                 assert np.allclose(copy_model._lambda, model._lambda)
                 assert np.allclose(copy_model._LU, model._LU)
                 assert np.allclose(copy_model._piv, model._piv)
                 assert np.allclose(copy_model.loo_residuals,
                                    model.loo_residuals)
Esempio n. 2
0
 def test_to_dict_fit_2d(self):
     x = 2 * np.pi * np.random.random_sample((20, 2))
     y = func_2d(x)
     eta = 1e-3
     for kernel in kernels_dict.values():
         k = kernel(2)
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t, eta)
                 model.fit(x, y)
                 output_dict = model.to_dict()
                 assert "X" in output_dict
                 assert "y" in output_dict
                 assert "eta" in output_dict
                 assert "kernel" in output_dict
                 assert "tail" in output_dict
                 assert "lambda" in output_dict
                 assert "LU" in output_dict
                 assert "piv" in output_dict
                 assert "loo" in output_dict
                 assert np.allclose(np.array(output_dict["X"]), model._X)
                 assert np.allclose(np.array(output_dict["y"]), model._y)
                 assert output_dict["eta"] == model._eta
                 assert output_dict["kernel"] == model._kernel.to_dict()
                 assert output_dict["tail"] == model._tail.to_dict()
                 assert np.allclose(np.array(output_dict["lambda"]),
                                    model._lambda)
                 assert np.allclose(np.array(output_dict["LU"]), model._LU)
                 assert np.allclose(np.array(output_dict["piv"]),
                                    model._piv)
                 assert np.allclose(np.array(output_dict["loo"]),
                                    model.loo_residuals)
Esempio n. 3
0
 def test_loo_residuals_1d(self):
     x = np.linspace(0, 2 * np.pi, num=8)
     y = func_1d(x)
     # model = RBF(x, y)
     model = RBF()
     assert model.loo_residuals is None
     model.fit(x, y)
     assert model.loo_residuals.shape == (8, )
Esempio n. 4
0
 def test_loo_residuals_2d(self):
     x = 2 * np.pi * np.random.random_sample((20, 2))
     y = func_2d(x)
     # model = RBF(x, y)
     model = RBF()
     assert model.loo_residuals is None
     model.fit(x, y)
     assert model.loo_residuals.shape == (20, )
Esempio n. 5
0
 def test___init__kernels(self):
     for name, cls in kernels_dict.items():
         model = RBF(kernel=name)
         assert isinstance(model._kernel, cls)
         kernel = cls(2)
         model = RBF(kernel)
         assert isinstance(model._kernel, cls)
         assert model._kernel.param == 2
         assert model._tail.degree == kernel.dmin
Esempio n. 6
0
 def test_predict_nofit(self):
     u = np.linspace(0, 2 * np.pi, num=50)
     for kernel in kernels_dict.values():
         k = kernel()
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t)
                 with pytest.raises(ValueError):
                     p, s = model.predict(u)
Esempio n. 7
0
 def test_train_2d(self):
     N = 20
     x = 2 * np.pi * np.random.random_sample((N, 2))
     y = func_2d(x)
     for kernel in kernels_dict.values():
         k = kernel(30)
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t)
                 model.train(x, y, method="Bounded", bounds=[1e-5, 20])
                 assert model._kernel.param >= 1e-5
                 assert model._kernel.param <= 20
                 assert model._is_fitted()
Esempio n. 8
0
 def test_train_1d(self):
     N = 8
     x = np.linspace(0, 2 * np.pi, num=N)
     y = func_1d(x)
     for kernel in kernels_dict.values():
         k = kernel(30)
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t)
                 model.train(x, y, method="Bounded", bounds=[1e-5, 20])
                 assert model._kernel.param >= 1e-5
                 assert model._kernel.param <= 20
                 assert model._is_fitted()
Esempio n. 9
0
 def test_to_dict_nofit(self):
     eta = 1
     for kernel in kernels_dict.values():
         k = kernel(2)
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t, eta)
                 output_dict = model.to_dict()
                 assert "eta" in output_dict
                 assert "kernel" in output_dict
                 assert "tail" in output_dict
                 assert output_dict["eta"] == model._eta
                 assert output_dict["kernel"] == model._kernel.to_dict()
                 assert output_dict["tail"] == model._tail.to_dict()
Esempio n. 10
0
 def test___init__tails(self):
     for name, cls in tails_dict.items():
         _tail = cls()
         for kernel in kernels_dict.values():
             k = kernel()
             if _tail.degree >= k.dmin:
                 model = RBF(k, tail=name)
                 assert isinstance(model._tail, cls)
                 model = RBF(k, tail=cls())
                 assert isinstance(model._tail, cls)
             else:
                 with pytest.raises(ValueError):
                     model = RBF(k, tail=name)
                 with pytest.raises(ValueError):
                     model = RBF(k, tail=cls())
Esempio n. 11
0
 def test_copy_nofit(self):
     eta = 1
     for kernel in kernels_dict.values():
         k = kernel(2)
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t, eta)
                 copy_model = model.copy()
                 assert copy_model._eta == model._eta
                 assert isinstance(copy_model._kernel,
                                   model._kernel.__class__)
                 assert copy_model._kernel.param == model._kernel.param
                 assert isinstance(copy_model._tail, model._tail.__class__)
                 assert np.all(
                     copy_model._tail.params == model._tail.params)
Esempio n. 12
0
 def test_from_dict_nofit(self):
     eta = 1
     for kernel in kernels_dict.values():
         k = kernel(2)
         for tail in tails_dict.values():
             t = tail()
             input_dict = {
                 "eta": eta,
                 "kernel": k.to_dict(),
                 "tail": t.to_dict()
             }
             if t.degree >= k.dmin:
                 model = RBF.from_dict(input_dict)
                 assert model._eta == eta
                 assert isinstance(model._kernel, kernel)
                 assert model._kernel.param == 2
                 assert isinstance(model._tail, tail)
             else:
                 with pytest.raises(ValueError):
                     model = RBF.from_dict(input_dict)
Esempio n. 13
0
 def test_predict_1d_fit(self):
     x = np.linspace(0, 2 * np.pi, num=8)
     u = np.linspace(0, 2 * np.pi, num=50)
     y = func_1d(x)
     eta = 1e-15
     for kernel in kernels_dict.values():
         k = kernel()
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t, eta)
                 model.fit(x, y)
                 p, s = model.predict(x)
                 assert p.shape == (len(x), )
                 assert s.shape == (len(x), )
                 assert not np.any(np.isnan(p))
                 assert not np.any(np.isnan(s))
                 assert np.all(s >= 0)
                 assert np.all(s <= 1e-3)
                 assert np.allclose(p, y)
                 p, s = model.predict(u)
                 assert p.shape == (len(u), )
                 assert s.shape == (len(u), )
                 assert not np.any(np.isnan(p))
                 assert not np.any(np.isnan(s))
                 assert np.all(s >= 0)
Esempio n. 14
0
 def test_predict_2d_fit(self):
     x = 2 * np.pi * np.random.random_sample((20, 2))
     u = 2 * np.pi * np.random.random_sample((50, 2))
     y = func_2d(x)
     eta = 1e-15
     for kernel in kernels_dict.values():
         k = kernel()
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t, eta)
                 model.fit(x, y)
                 p, s = model.predict(x)
                 assert p.shape == (len(x), )
                 assert s.shape == (len(x), )
                 assert not np.any(np.isnan(p))
                 assert not np.any(np.isnan(s))
                 assert np.all(s >= 0)
                 assert np.all(s <= 1e-3)
                 assert np.allclose(p, y)
                 p, s = model.predict(u)
                 assert p.shape == (len(u), )
                 assert s.shape == (len(u), )
                 assert not np.any(np.isnan(p))
                 assert not np.any(np.isnan(s))
                 assert np.all(s >= 0)
Esempio n. 15
0
 def test_from_dict_fit_1d(self):
     x = np.linspace(0, 2 * np.pi, num=8)
     y = func_1d(x)
     eta = 1e-3
     p = 3
     for kernel in kernels_dict.values():
         k = kernel(2)
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 _model = RBF(k, t, eta)
                 _model.fit(x, y, p)
                 input_dict = {
                     "X": x.reshape((-1, 1)).tolist(),
                     "y": y.tolist(),
                     "eta": eta,
                     "kernel": k.to_dict(),
                     "lambda": _model._lambda.tolist(),
                     "LU": _model._LU.tolist(),
                     "piv": _model._piv.tolist(),
                     "loo": _model._loo_residuals.tolist(),
                     "tail": _model._tail.to_dict()
                 }
                 model = RBF.from_dict(input_dict)
                 assert model._X.shape == (8, 1)
                 assert np.allclose(model._X.ravel(), x)
                 assert model._y.shape == (8, )
                 assert np.allclose(model._y, y)
                 assert model._eta == eta
                 assert isinstance(model._kernel, kernel)
                 assert model._kernel.param == p
                 assert np.allclose(model._lambda, _model._lambda)
                 assert np.allclose(model._LU, _model._LU)
                 assert np.allclose(model._piv, _model._piv)
                 assert np.allclose(model._loo_residuals,
                                    _model._loo_residuals)
                 assert isinstance(model._tail, _model._tail.__class__)
                 assert np.all(model._tail.params == _model._tail.params)
Esempio n. 16
0
 def test_fit_2d_default(self):
     N = 20
     x = 2 * np.pi * np.random.random_sample((N, 2))
     y = func_2d(x)
     eta = 1e-15
     for kernel in kernels_dict.values():
         k = kernel()
         for tail in tails_dict.values():
             t = tail()
             if t.degree >= k.dmin:
                 model = RBF(k, t, eta)
                 model.fit(x, y)
                 assert hasattr(model, "_lambda")
                 assert model._lambda.shape == (N, )
                 assert hasattr(model, "_LU")
                 assert model._LU.shape == (N, N) if t.degree == -1 else (
                     N + 1, N + 1) if t.degree == 0 else (N + 2, N + 2)
                 assert hasattr(model, "_piv")
                 assert model._piv.shape == (N, ) if t.degree == -1 else (
                     N + 1, ) if t.degree == 0 else (N + 2, )
                 assert hasattr(model, "_loo_residuals")
                 assert model._loo_residuals.shape == (N, )
                 assert model._kernel.param == k.param
                 if t.degree == -1:
                     assert np.allclose(
                         np.dot(model._Phi(model._X),
                                model._lambda.reshape((-1, 1))),
                         y.reshape((-1, 1)))
                 elif t.degree == 0:
                     assert np.allclose(
                         np.dot(model._Phi(model._X),
                                model._lambda.reshape(
                                    (-1, 1))) + model._tail._p * np.ones(
                                        (N, 1)), y.reshape((-1, 1)))
                     assert np.sum(model._lambda) < 1e-5
                     assert np.sum(model._lambda) > -1e-5
                 elif t.degree == 1:
                     assert np.allclose(
                         np.dot(model._Phi(model._X),
                                model._lambda.reshape((-1, 1))) + np.dot(
                                    model._tail.compute_P(model._X),
                                    np.array(model._tail.params).reshape(
                                        (-1, 1))), y.reshape((-1, 1)))
                     assert np.allclose(
                         np.dot(
                             np.transpose(model._tail.compute_P(model._X)),
                             model._lambda.reshape((-1, 1))),
                         np.zeros((3, 1)))
Esempio n. 17
0
 def test___init__defaults(self):
     model = RBF()
     assert isinstance(model._kernel, kernels_dict["cubic"])
     assert isinstance(model._tail, tails_dict["linear"])
     assert model._eta == 1e-6
Esempio n. 18
0
 def test___init__eta(self):
     model = RBF(eta=1)
     assert model._eta == 1