parse_doc_string(MMGA.__init__) if __name__ == '__main__': problem = MultiModalSimple2() algorithm = MMGA(pop_size=20, eliminate_duplicates=True) ret = minimize(problem, algorithm, termination=('n_gen', 100), seed=1, save_history=True, verbose=False) def plot(algorithm): pop = algorithm.pop sc = Scatter(title=algorithm.n_gen) sc.add(curve(algorithm.problem), plot_type="line", color="black") sc.add(np.column_stack([pop.get("X"), pop.get("F")]), color="red") sc.do() plot(ret.algorithm) plt.show() with Video(File("mm.mp4")) as vid: for entry in ret.history: plot(entry) vid.record()
def __init__(self): super().__init__() self.vid = Video(File("tsp.mp4"))
import numpy as np from matplotlib import pyplot as plt from pyrecorder.recorders.file import File from pyrecorder.video import Video with Video(File("wave.mp4", fps=15)) as vid: for t in range(200): x = np.linspace(0, 4, 1000) y = np.sin(2 * np.pi * (x - 0.01 * t)) plt.plot(x, y) vid.record()
import matplotlib.pyplot as plt import numpy as np from pyrecorder.recorders.file import File from pyrecorder.video import Video plt.style.use('dark_background') with Video(File("coil.mp4", fps=15)) as vid: for t in range(500): a = np.arange(t) * 0.1 plt.plot(a * np.sin(a), a * np.cos(a)) plt.xlim(-50, 50) plt.ylim(-50, 50) plt.axis('off') vid.record()
# START example import numpy as np from pyrecorder.recorders.file import File from pyrecorder.video import Video from pymoo.algorithms.nsga2 import NSGA2 from pymoo.visualization.scatter import Scatter vid = Video(File("example.mp4")) for k in range(10): X = np.random.random((100, 2)) Scatter(title=str(k)).add(X).do() vid.record() vid.close() # END example # START ga from pymoo.factory import get_problem from pymoo.optimize import minimize problem = get_problem("zdt1") algorithm = NSGA2(pop_size=100, eliminate_duplicates=True) ret = minimize(problem, algorithm, termination=('n_gen', 100), seed=1, save_history=True,