def test_regressor_rf(normalize, loss): rng = np.random.RandomState(0) # approximate kernel mapping transformer = RandomFourier(n_components=100, random_state=0, gamma=10) X_trans = transformer.fit_transform(X) y, coef = generate_target(X_trans, rng, -0.1, 0.1) y_train = y[:n_train] y_test = y[n_train:] _test_regressor(transformer, X_train, y_train, X_test, y_test, X_trans, normalize=normalize, loss=loss)
def test_sgd_regressor_rf_use_offset(loss): rng = np.random.RandomState(0) transform = RandomFourier(n_components=100, random_state=0, gamma=10, use_offset=True) X_trans = transform.fit_transform(X) y, coef = generate_target(X_trans, rng, -0.1, 0.1) y_train = y[:n_train] y_test = y[n_train:] _test_regressor(transform, y_train, y_test, X_trans, loss=loss)
def test_sgd_classifier_rf(loss): rng = np.random.RandomState(0) transform = RandomFourier(n_components=100, random_state=0, gamma=10) X_trans = transform.fit_transform(X) y, coef = generate_target(X_trans, rng, -0.1, 0.1) y_train = y[:n_train] y_test = y[n_train:] _test_classifier(transform, np.sign(y_train), np.sign(y_test), X_trans, max_iter=500, loss=loss)
def test_compact_random_feature_random_fourier(down): for gamma in [0.1, 1, 10]: # approximate kernel mapping transform_up = RandomFourier(n_components=100, gamma=gamma, random_state=0) transform_down = down(n_components=50, random_state=0) X_trans_naive = transform_down.fit_transform( transform_up.fit_transform(X)) transform_up = RandomFourier(n_components=100, gamma=gamma, random_state=0) transform_down = down(n_components=50, random_state=0) transformer = CompactRandomFeature(transformer_up=transform_up, transformer_down=transform_down) X_trans = transformer.fit_transform(X) assert_allclose(X_trans_naive, X_trans)
def test_random_fourier(gamma, n_components, use_offset): for gamma, n_components in zip([10, 100], [2048, 4096]): # compute exact kernel kernel = rbf_kernel(X, Y, gamma) # approximate kernel mapping rf_transform = RandomFourier(n_components=n_components, gamma=gamma, use_offset=True, random_state=0) X_trans = rf_transform.fit_transform(X) Y_trans = rf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert np.abs(np.mean(error)) < 0.01 assert np.max(error) < 0.1 # nothing too far off assert np.mean(error) < 0.05 # mean is fairly close # for sparse matrix X_trans_sp = rf_transform.transform(csr_matrix(X)) assert_allclose_dense_sparse(X_trans, X_trans_sp)
assert score_lkrf_weak >= score_lkrf # remove bases n_nz = np.sum(lkrf.importance_weights_ != 0) print(n_nz) if lkrf.remove_bases(): X_trans_removed = lkrf.transform(X) assert_almost_equal(X_trans_removed.shape[1], n_nz) indices = np.nonzero(lkrf.importance_weights_)[0] assert_almost_equal(X_trans_removed, X_trans[:, indices]) params = [ RBFSampler(n_components=128, random_state=0), RandomFourier(n_components=128, random_state=0), RandomFourier(n_components=128, random_state=0, use_offset=True), OrthogonalRandomFeature(n_components=128, random_state=0), OrthogonalRandomFeature(n_components=128, random_state=0, use_offset=True), RandomMaclaurin(random_state=0), RandomKernel(random_state=0) ] @pytest.mark.parametrize("transformer", params) def test_lkrf_chi2(transformer, rho=1): _test_learning_kernel_with_random_feature('chi2', transformer, rho) def test_lkrf_chi2_origin():