Esempio n. 1
0
def main_EIV_single_from_template(myfilename, template_path):
    # x_test,y_test,e_test,t_test = make_epochs_EIV(myfilename, chnames, bandpass = (1.0,20.0), filtre_order = 2 ,delta=0.6, target=[2], nontarget=[1])

    centroids_train = np.load(template_path + 'Centroids_List.npy')
    Covmats_Dict = np.load(template_path + 'Covmats_Dict.npy')
    Covmats_Dict = Covmats_Dict.item()
    chnames = Covmats_Dict['channel names']

    ERP_train = np.load(template_path + 'ERP_Array.npy')
    erp_train = ERPCovariances(estimator='cov')
    erp_train.P = ERP_train
    # X_test = erp_train.transform(x_test)

    r_TNT_mu_List = np.load(template_path + 'rTNT_mu.npy')
    r_TNT_var_List = np.load(template_path + 'rTNT_var.npy')

    data, labels, event, target = get_data_from_csv_EIV(myfilename=myfilename,
                                                        chnames=chnames)

    mean, var = generic_test_loop(data,
                                  labels,
                                  event,
                                  ERP_train,
                                  centroids_train,
                                  r_TNT_mu_List,
                                  r_TNT_var_List,
                                  column_number=7,
                                  nb_repetitions=4,
                                  items_list=[1, 2, 3, 4, 5, 6, 7],
                                  visu=False,
                                  flashmode='EIV')

    return mean, var
Esempio n. 2
0
def ml_classifier(inputs, targets, classifier=None, pipeline=None):
    """Uses sklearn to fit a model given inputs and targets
    Args:
        inputs: list containing (N trials * M channels) data segments of length(number of features).
        targets: list containing (N trials * M channels) of marker data (0 or 1).
        classifier: pre-trained lda classifier; if None train from scratch
        pipeline: name of pipeline to create if classifier is None
    Returns:
        classifier: classifier object
    """
    pipeline_dict = {
        'vect_lr':
        make_pipeline(Vectorizer(), StandardScaler(), LogisticRegression()),
        'vecct_reglda':
        make_pipeline(Vectorizer(), LDA(shrinkage='auto', solver='eigen')),
        'xdawn_reglda':
        make_pipeline(Xdawn(2, classes=[1]), Vectorizer(),
                      LDA(shrinkage='auto', solver='eigen')),
        'erpcov_ts':
        make_pipeline(ERPCovariances(), TangentSpace(), LogisticRegression()),
        'erpcov_mdm':
        make_pipeline(ERPCovariances(), MDM())
    }
    if not classifier and pipeline:
        classifier = pipeline_dict[pipeline.lower()]
    classifier.fit(inputs, targets)
    return classifier
Esempio n. 3
0
def test_erp_covariances_classes(rndstate, get_labels):
    n_matrices, n_channels, n_times, n_classes = 4, 3, 100, 2
    x = rndstate.randn(n_matrices, n_channels, n_times)
    labels = get_labels(n_matrices, n_classes)
    cov = ERPCovariances(classes=[0])
    covmats = cov.fit_transform(x, labels)
    assert covmats.shape == (n_matrices, 2 * n_channels, 2 * n_channels)
    assert is_spsd(covmats)
Esempio n. 4
0
def N170_test(session_data):
    markers = N170_MARKERS
    epochs = get_session_erp_epochs(session_data, markers)
    conditions = OrderedDict()
    for i in range(len(markers)):
        conditions[markers[i]] = [i+1]
   
    clfs = OrderedDict()
    
    clfs['Vect + LR'] = make_pipeline(Vectorizer(), StandardScaler(), LogisticRegression())
    clfs['Vect + RegLDA'] = make_pipeline(Vectorizer(), LDA(shrinkage='auto', solver='eigen'))
    clfs['ERPCov + TS'] = make_pipeline(ERPCovariances(estimator='oas'), TangentSpace(), LogisticRegression())
    clfs['ERPCov + MDM'] = make_pipeline(ERPCovariances(estimator='oas'), MDM())
    clfs['XdawnCov + TS'] = make_pipeline(XdawnCovariances(estimator='oas'), TangentSpace(), LogisticRegression())
    clfs['XdawnCov + MDM'] = make_pipeline(XdawnCovariances(estimator='oas'), MDM())
    methods_list = ['Vect + LR','Vect + RegLDA','ERPCov + TS','ERPCov + MDM','XdawnCov + TS','XdawnCov + MDM']
    # format data
    epochs.pick_types(eeg=True)
    X = epochs.get_data() * 1e6
    times = epochs.times
    y = epochs.events[:, -1]

    # define cross validation 
    cv = StratifiedShuffleSplit(n_splits=20, test_size=0.25, 
                                random_state=42)

    # run cross validation for each pipeline
    auc = []
    methods = []
    print('Calcul in progress...')
    for m in clfs:
        try:

            res = cross_val_score(clfs[m], X, y==2, scoring='roc_auc', 
                                  cv=cv, n_jobs=-1)
            auc.extend(res)
            methods.extend([m]*len(res))
        except Exception:
            print("exception")
        
    ## Plot Decoding Results

    results = pd.DataFrame(data=auc, columns=['AUC'])
    results['Method'] = methods
    n_row,n_column = results.shape
    auc_means = []
    for method in methods_list:
        auc = []
        for i in range(n_row):
            if results.loc[i,'Method']== method:
                auc.append(results.loc[i,'AUC'])
        auc_means.append(np.mean(auc))
    counter = 0
    for i in range(len(methods_list)):
        color = 'green' if auc_means[i]>=0.7 else 'red'
        counter = counter +1 if auc_means[i]>=0.7 else counter
        
    return counter > 0, counter
Esempio n. 5
0
def test_ERPcovariances():
    """Test fit ERPCovariances"""
    x = np.random.randn(10, 3, 100)
    labels = np.array([0, 1]).repeat(5)
    cov = ERPCovariances()
    cov.fit_transform(x, labels)
    cov = ERPCovariances(classes=[0])
    cov.fit_transform(x, labels)
    # assert raise svd
    assert_raises(TypeError, ERPCovariances, svd='42')
    cov = ERPCovariances(svd=1)
Esempio n. 6
0
def test_from_cross_template_P300(template_path,
                                  subject_path,
                                  test_chnames,
                                  flashmode='RoCo',
                                  nb_targets=180,
                                  visu=False):
    T = 0
    NT = 1

    ERP = np.load(template_path + 'ERP_Array.npy')

    Centroids_List = np.load(template_path + 'Centroids_List.npy')

    mu_TNT = np.load(template_path + 'rTNT_mu.npy')
    sigma_TNT = np.load(template_path + 'rTNT_var.npy')

    data, labels, event = get_data_from_csv_EIV(
        myfilename=subject_path + '-signals.csv',
        markersfile=subject_path + 'markers.csv',
        chnames=test_chnames)

    erp = ERPCovariances()
    erp.P = ERP
    erp.estimator = 'cov'
    X = erp.transform(data)
    train_NaiveBayes = R_TNT_NaiveBayes(targets=[
        'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
        'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '1', '2',
        '3', '4', '5', '6', '7', '8', '9', '_'
    ],
                                        mu_TNT=mu_TNT,
                                        sigma_TNT=sigma_TNT,
                                        class_prior=None)

    dist = [
        np.array([distance(x, Centroids_List[l]) for i, x in enumerate(X)])
        for l in [T, NT]
    ]

    r_TNT = np.array(np.log(dist[0] / dist[1]))

    mean, var = test_loop_P300(r_TNT_test=r_TNT,
                               y_test=labels,
                               e_test=event,
                               train_NaiveBayes=train_NaiveBayes,
                               T=0,
                               NT=1,
                               flashmode=flashmode,
                               visu=visu,
                               nb_targets=nb_targets)

    return mean, var
Esempio n. 7
0
def test_erp_covariances(estimator, svd, rndstate, get_labels):
    """Test fit ERPCovariances"""
    n_classes, n_matrices, n_channels, n_times = 2, 4, 3, 100
    x = rndstate.randn(n_matrices, n_channels, n_times)
    labels = get_labels(n_matrices, n_classes)
    cov = ERPCovariances(estimator=estimator, svd=svd)
    covmats = cov.fit_transform(x, labels)
    if svd is None:
        covsize = (n_classes + 1) * n_channels
    else:
        covsize = n_classes * svd + n_channels
    assert cov.get_params() == dict(classes=None, estimator=estimator, svd=svd)
    assert covmats.shape == (n_matrices, covsize, covsize)
    assert is_spsd(covmats)
def test_ERPcovariances():
    """Test fit ERPCovariances"""
    x = np.random.randn(10, 3, 100)
    labels = np.array([0, 1]).repeat(5)
    cov = ERPCovariances()
    cov.fit_transform(x, labels)
    cov = ERPCovariances(classes=[0])
    cov.fit_transform(x, labels)
    # assert raise svd
    assert_raises(TypeError, ERPCovariances, svd='42')
    cov = ERPCovariances(svd=2)
    assert_equal(cov.get_params(), dict(classes=None, estimator='scm',
                                        svd=2))
    cov.fit_transform(x, labels)
Esempio n. 9
0
def test_erp_covariances_svd_error(rndstate, get_labels):
    """ assert raise svd """
    n_matrices, n_channels, n_times, n_classes = 4, 3, 50, 2
    x = rndstate.randn(n_matrices, n_channels, n_times)
    labels = get_labels(n_matrices, n_classes)
    with pytest.raises(TypeError):
        ERPCovariances(svd="42").fit(x, labels)
Esempio n. 10
0
def erpcov_ts_lr():
    """Obtains Riemannian features and classifies them with logregression"""
    return make_pipeline(
        ERPCovariances(estimator="oas"),
        TangentSpace(),
        LogisticRegression(solver="liblinear",
                           C=1.0,
                           class_weight="balanced",
                           penalty="l1"),
    )
def test_ERPcovariances():
    """Test fit ERPCovariances"""
    x = np.random.randn(10,3,100)
    labels = np.array([0,1]).repeat(5)
    cov = ERPCovariances()
    cov.fit_transform(x,labels)
    cov = ERPCovariances(classes=[0])
    cov.fit_transform(x,labels)
    # assert raise svd
    assert_raises(TypeError,ERPCovariances,svd='42')
    cov = ERPCovariances(svd=1)
Esempio n. 12
0
def predict_ERP_centroids(x, y, metric='riemann', ERP_bloc=None, T=0, NT=1):
    """Helper to predict the r_TNT for a new set of trials.

     Parameters
     ----------
     x : ndarray, shape (n_trials, n_channels, n_times)
     y : ndarray, shape (,n_trials)
     ERP_bloc : list with 0 or 1 for the class in the ERP

     Returns
    -------
    erp :  the ERPCovariance object with erp.P an ndarray, shape (n_channels*len(ERP_bloc), n_times)
    centroids : list of the two centers of classe which are both ndarray, shape (n_channels*len(ERP_bloc), n_channels*len(ERP_bloc))
    X : ndarray, shape (n_trials, n_channels*len(ERP_bloc), n_channels*len(ERP_bloc)), the set of super covariance matrices of set signals given in input
         """
    classes = [T, NT]
    erp = ERPCovariances(classes=ERP_bloc, estimator='cov')
    erp.fit(X=x, y=y)
    X = erp.transform(X=x)
    centroids = [
        mean_covariance(X[y == l, :, :], metric=metric) for l in classes
    ]
    return erp, centroids, X
def erp_cov_vr_pc(X_training, labels_training, X_test, labels_test, class_name,
                  class_info):
    # estimate the extended ERP covariance matrices with Xdawn
    erpc = ERPCovariances(classes=[class_info[class_name]], estimator='lwf')
    erpc.fit(X_training, labels_training)
    covs_training = erpc.transform(X_training)
    covs_test = erpc.transform(X_test)

    # get the AUC for the classification
    clf = MDM()
    clf.fit(covs_training, labels_training)
    labels_pred = clf.predict(covs_test)
    return roc_auc_score(labels_test, labels_pred)
Esempio n. 14
0
def get_sourcetarget_split_p300(source, target, ncovs_train):

    X_source = source['epochs']
    y_source = source['labels'].flatten()
    covs_source = ERPCovariances(classes=[2], estimator='lwf').fit_transform(
        X_source, y_source)

    source = {}
    source['covs'] = covs_source
    source['labels'] = y_source

    X_target = target['epochs']
    y_target = target['labels'].flatten()

    sel = np.arange(len(y_target))
    np.random.shuffle(sel)
    X_target = X_target[sel]
    y_target = y_target[sel]

    idx_erps = np.where(y_target == 2)[0][:ncovs_train]
    idx_rest = np.where(
        y_target == 1)[0][:ncovs_train *
                          5]  # because there's one ERP in every 6 flashes

    idx_train = np.concatenate([idx_erps, idx_rest])
    idx_test = np.array(
        [i for i in range(len(y_target)) if i not in idx_train])

    erp = ERPCovariances(classes=[2], estimator='lwf')
    erp.fit(X_target[idx_train], y_target[idx_train])

    target_train = {}
    covs_target_train = erp.transform(X_target[idx_train])
    y_target_train = y_target[idx_train]
    target_train['covs'] = covs_target_train
    target_train['labels'] = y_target_train

    target_test = {}
    covs_target_test = erp.transform(X_target[idx_test])
    y_target_test = y_target[idx_test]
    target_test['covs'] = covs_target_test
    target_test['labels'] = y_target_test

    return source, target_train, target_test
Esempio n. 15
0
def distribution_single_from_template(test_sub, test_sess, template_path,
                                      database):

    x_test, y_test, e_test, t_test, _, _ = database.subjects[
        test_sub].get_data([test_sess])

    ERP_train = np.load(template_path + 'ERP_Array.npy')
    erp_train = ERPCovariances(estimator='cov')
    erp_train.P = ERP_train
    X_test = erp_train.transform(x_test)

    centroids_train = np.load(template_path + 'Centroids_List.npy')

    erp_train = ERPCovariances(estimator='cov')
    erp_train.P = ERP_train

    r_TNT_test = predict_R_TNT(X=X_test, centroids_list=centroids_train)

    return r_TNT_test, y_test
epochs = Epochs(raw, events=events, event_id=event_id, 
                tmin=-0.1, tmax=0.8, baseline=None,
                reject={'eeg': 75e-6}, preload=True,
                verbose=False, picks=[0,1,2,3])

print('sample drop %: ', (1 - len(epochs.events)/len(events)) * 100)
epochs

###################################################################################################
# Run classification
# ----------------------------

clfs = OrderedDict()
clfs['Vect + LR'] = make_pipeline(Vectorizer(), StandardScaler(), LogisticRegression())
clfs['Vect + RegLDA'] = make_pipeline(Vectorizer(), LDA(shrinkage='auto', solver='eigen'))
clfs['ERPCov + TS'] = make_pipeline(ERPCovariances(estimator='oas'), TangentSpace(), LogisticRegression())
clfs['ERPCov + MDM'] = make_pipeline(ERPCovariances(estimator='oas'), MDM())
clfs['XdawnCov + TS'] = make_pipeline(XdawnCovariances(estimator='oas'), TangentSpace(), LogisticRegression())
clfs['XdawnCov + MDM'] = make_pipeline(XdawnCovariances(estimator='oas'), MDM())

# format data
epochs.pick_types(eeg=True)
X = epochs.get_data() * 1e6
times = epochs.times
y = epochs.events[:, -1]

# define cross validation 
cv = StratifiedShuffleSplit(n_splits=20, test_size=0.25, 
                                    random_state=42)

# run cross validation for each pipeline
Esempio n. 17
0
def test_ERPcovariances():
    """Test fit ERPCovariances"""
    x = np.random.randn(10, 3, 100)
    labels = np.array([0, 1]).repeat(5)
    cov = ERPCovariances()
    cov.fit_transform(x, labels)
    cov = ERPCovariances(classes=[0])
    cov.fit_transform(x, labels)
    # assert raise svd
    assert_raises(TypeError, ERPCovariances, svd='42')
    cov = ERPCovariances(svd=1)
    assert_equal(cov.get_params(), dict(classes=None, estimator='scm', svd=1))
Esempio n. 18
0
        return np.reshape(X, (X.shape[0], -1))


##############################################################################
# Create pipelines
# ----------------
# Pipelines must be a dict of sklearn pipeline transformer.
pipelines = {}

# we have to do this because the classes are called 'Target' and 'NonTarget'
# but the evaluation function uses a LabelEncoder, transforming them
# to 0 and 1
labels_dict = {'Target': 1, 'NonTarget': 0}

pipelines['RG + LDA'] = make_pipeline(
    XdawnCovariances(
        nfilter=2,
        classes=[
            labels_dict['Target']],
        estimator='lwf',
        xdawn_estimator='lwf'),
    TangentSpace(),
    LDA(solver='lsqr', shrinkage='auto'))

pipelines['Xdw + LDA'] = make_pipeline(Xdawn(nfilter=2, estimator='lwf'),
                                       Vectorizer(), LDA(solver='lsqr',
                                                         shrinkage='auto'))
pipelines['ERPCov + TS'] = make_pipeline(ERPCovariances(classes=[0, 1], estimator='oas', svd=None),
                                         TangentSpace(metric='riemann'),
                                         LogisticRegression(solver='lbfgs'))
Esempio n. 19
0
# ----------------------------

clfs = OrderedDict()
clfs['Vect + LR'] = make_pipeline(Vectorizer(), StandardScaler(),
                                  LogisticRegression())
clfs['Vect + RegLDA'] = make_pipeline(Vectorizer(),
                                      LDA(shrinkage='auto', solver='eigen'))
clfs['Xdawn + RegLDA'] = make_pipeline(Xdawn(2, classes=[1]), Vectorizer(),
                                       LDA(shrinkage='auto', solver='eigen'))

clfs['XdawnCov + TS'] = make_pipeline(XdawnCovariances(estimator='oas'),
                                      TangentSpace(), LogisticRegression())
clfs['XdawnCov + MDM'] = make_pipeline(XdawnCovariances(estimator='oas'),
                                       MDM())

clfs['ERPCov + TS'] = make_pipeline(ERPCovariances(), TangentSpace(),
                                    LogisticRegression())
clfs['ERPCov + MDM'] = make_pipeline(ERPCovariances(), MDM())

# format data
epochs.pick_types(eeg=True)
X = epochs.get_data() * 1e6
times = epochs.times
y = epochs.events[:, -1]

# define cross validation
cv = StratifiedShuffleSplit(n_splits=10, test_size=0.25, random_state=42)

# run cross validation for each pipeline
auc = []
methods = []
Esempio n. 20
0
        },
    ),
    'CSP LDA': (
        make_pipeline(CSP(), LDA(shrinkage='auto', solver='eigen')),
        {
            'csp__n_components': (6, 9, 13),
            'csp__cov_est': ('concat', 'epoch')
        },
    ),
    'Xdawn LDA': (
        make_pipeline(Xdawn(2, classes=[1]), Vectorizer(),
                      LDA(shrinkage='auto', solver='eigen')),
        {},
    ),
    'ERPCov TS LR': (
        make_pipeline(ERPCovariances(estimator='oas'), TangentSpace(),
                      LogisticRegression()),
        {
            'erpcovariances__estimator': ('lwf', 'oas')
        },
    ),
    'ERPCov MDM': (
        make_pipeline(ERPCovariances(), MDM()),
        {
            'erpcovariances__estimator': ('lwf', 'oas')
        },
    ),
}


def crossvalidate_record(record, clfs=clfs, scores=scores):
			labels = LabelEncoder().fit_transform(labels)

			kf = KFold(n_splits = 6)
			repetitions = [1, 2]				
			auc = []

			blocks = np.arange(1, 12+1)
			for train_idx, test_idx in kf.split(np.arange(12)):

				# split in training and testing blocks
				X_training, labels_training, _ = get_block_repetition(X, labels, meta, blocks[train_idx], repetitions)
				X_test, labels_test, _ = get_block_repetition(X, labels, meta, blocks[test_idx], repetitions)

				# estimate the extended ERP covariance matrices with Xdawn
				dict_labels = {'Target':1, 'NonTarget':0}
				erpc = ERPCovariances(classes=[dict_labels['Target']], estimator='lwf')
				erpc.fit(X_training, labels_training)
				covs_training = erpc.transform(X_training)
				covs_test = erpc.transform(X_test)

				# get the AUC for the classification
				clf = MDM()
				clf.fit(covs_training, labels_training)
				labels_pred = clf.predict(covs_test)
				auc.append(roc_auc_score(labels_test, labels_pred))

			# stock scores
			scores_subject.append(np.mean(auc))

		scores.append(scores_subject)
def erp_cov(X, y, class_name, class_info):
    c = __get__proto__class__(class_name, class_info)
    skf = StratifiedKFold(n_splits=5)
    clf = make_pipeline(ERPCovariances(estimator='lwf', classes=c), MDM())
    return cross_val_score(clf, X, y, cv=skf, scoring='roc_auc').mean()
Esempio n. 23
0
                        events,
                        event_id,
                        tmin=0.0,
                        tmax=0.8,
                        baseline=None,
                        verbose=False,
                        preload=True)
    epochs.pick_types(eeg=True)

    # get trials and labels
    X = epochs.get_data()
    y = epochs.events[:, -1]
    y = y - 1

    # cross validation
    skf = StratifiedKFold(n_splits=5)
    clf = make_pipeline(ERPCovariances(estimator='lwf', classes=[1]), MDM())
    scr[subject] = cross_val_score(clf, X, y, cv=skf, scoring='roc_auc').mean()

    # print results of classification
    print('subject', subject)
    print('mean AUC :', scr[subject])

filename = './classification_scores.pkl'
joblib.dump(scr, filename)

with open('classification_scores.txt', 'w') as the_file:
    for subject in scr.keys():
        the_file.write('subject ' + str(subject).zfill(2) + ' :' +
                       ' {:.2f}'.format(scr[subject]) + '\n')
Esempio n. 24
0
                verbose=False,
                picks=[0, 1, 2, 3])

print('sample drop %: ', (1 - len(epochs.events) / len(events)) * 100)
epochs

###################################################################################################
# Run classification
# ----------------------------

clfs = OrderedDict()
clfs['Vect + LR'] = make_pipeline(Vectorizer(), StandardScaler(),
                                  LogisticRegression())
clfs['Vect + RegLDA'] = make_pipeline(Vectorizer(),
                                      LDA(shrinkage='auto', solver='eigen'))
clfs['ERPCov + TS'] = make_pipeline(ERPCovariances(estimator='oas'),
                                    TangentSpace(), LogisticRegression())
clfs['ERPCov + MDM'] = make_pipeline(ERPCovariances(estimator='oas'), MDM())
clfs['XdawnCov + TS'] = make_pipeline(XdawnCovariances(estimator='oas'),
                                      TangentSpace(), LogisticRegression())
clfs['XdawnCov + MDM'] = make_pipeline(XdawnCovariances(estimator='oas'),
                                       MDM())

# format data
epochs.pick_types(eeg=True)
X = epochs.get_data() * 1e6
times = epochs.times
y = epochs.events[:, -1]

# define cross validation
cv = StratifiedShuffleSplit(n_splits=20, test_size=0.25, random_state=42)
Esempio n. 25
0
def decode(epochs,
           get_y_label_func,
           epoch_filter=None,
           decoding_method='standard',
           sliding_window_size=None,
           sliding_window_step=None,
           n_jobs=multiprocessing.cpu_count(),
           equalize_event_counts=True,
           only_fit=False,
           generalize_across_time=True):
    """
    Basic flow for decoding
    """

    config = dict(equalize_event_counts=equalize_event_counts,
                  only_fit=only_fit,
                  sliding_window_size=sliding_window_size,
                  sliding_window_step=sliding_window_step,
                  decoding_method=decoding_method,
                  generalize_across_time=generalize_across_time,
                  epoch_filter=str(epoch_filter))

    if epoch_filter is not None:
        epochs = epochs[epoch_filter]

    #-- Classify epochs into groups (training epochs)
    y_labels = get_y_label_func(epochs)

    if equalize_event_counts:
        epochs.events[:, 2] = y_labels
        epochs.event_id = {str(label): label for label in np.unique(y_labels)}
        min_n_items_per_y_label = min(
            [len(epochs[cond]) for cond in epochs.event_id.keys()])
        print("\nEqualizing the number of epochs to %d per condition..." %
              min_n_items_per_y_label)
        epochs.equalize_event_counts(epochs.event_id.keys())
        y_labels = epochs.events[:, 2]

    print("The epochs were classified into %d groups:" % len(set(y_labels)))
    for g in set(y_labels):
        print("Group {:}: {:} epochs".format(g, sum(np.array(y_labels) == g)))

    #-- Create the decoding pipeline
    print("Creating the classification pipeline...")

    epochs_data = epochs.get_data()

    preprocess_pipeline = None

    if decoding_method.startswith('standard'):

        if 'reg' in decoding_method:
            clf = make_pipeline(StandardScaler(), Ridge())
        else:
            clf = make_pipeline(
                StandardScaler(),
                svm.SVC(C=1, kernel='linear', class_weight='balanced'))

        if 'raw' not in decoding_method:
            assert sliding_window_size is not None
            assert sliding_window_step is not None
            preprocess_pipeline = \
                make_pipeline(umne.transformers.SlidingWindow(window_size=sliding_window_size, step=sliding_window_step, average=True))

    elif decoding_method == 'ERP_cov':
        clf = make_pipeline(
            UnsupervisedSpatialFilter(PCA(20), average=False),
            ERPCovariances(
                estimator='lwf'),  # todo how to apply sliding window?
            CSP(30, log=False),
            TangentSpace('logeuclid'),
            LogisticRegression('l2'))  # todo why logistic regression?

    elif decoding_method == 'Xdawn_cov':
        clf = make_pipeline(
            UnsupervisedSpatialFilter(PCA(50), average=False),
            XdawnCovariances(12, estimator='lwf', xdawn_estimator='lwf'),
            TangentSpace('logeuclid'), LogisticRegression('l2'))

    elif decoding_method == 'Hankel_cov':
        clf = make_pipeline(
            UnsupervisedSpatialFilter(PCA(70), average=False),
            HankelCovariances(delays=[1, 8, 12, 64], estimator='oas'),
            CSP(15, log=False), TangentSpace('logeuclid'),
            LogisticRegression('l2'))

    else:
        raise Exception('Unknown decoding method: {:}'.format(decoding_method))

    print('\nDecoding pipeline:')
    for i in range(len(clf.steps)):
        print('Step #{:}: {:}'.format(i + 1, clf.steps[i][1]))

    if preprocess_pipeline is not None:
        print('\nApplying the pre-processing pipeline:')
        for i in range(len(preprocess_pipeline.steps)):
            print('Step #{:}: {:}'.format(i + 1,
                                          preprocess_pipeline.steps[i][1]))
        epochs_data = preprocess_pipeline.fit_transform(epochs_data)

    if only_fit:

        #-- Only fit the decoders

        procedure = 'only_fit'
        scores = None
        cv = None

        if decoding_method.startswith('standard'):
            if 'reg' in decoding_method:
                if 'r2' in decoding_method:
                    scoring = metrics.make_scorer(metrics.r2_score)
                else:
                    scoring = metrics.make_scorer(metrics.mean_squared_error)
            else:
                scoring = 'accuracy'
            if generalize_across_time:
                estimator = GeneralizingEstimator(clf,
                                                  scoring=scoring,
                                                  n_jobs=n_jobs)
            else:
                estimator = SlidingEstimator(clf,
                                             scoring=scoring,
                                             n_jobs=n_jobs)
        else:
            estimator = clf

        estimator.fit(X=epochs_data, y=y_labels)

    else:

        #-- Classify & score -- cross-validation

        procedure = 'fit_and_score'
        print(
            "\nCreating a classifier and calculating accuracy scores (this may take some time)..."
        )

        cv = StratifiedKFold(n_splits=5)
        if decoding_method.startswith('standard'):
            if 'reg' in decoding_method:
                if 'r2' in decoding_method:
                    scoring = metrics.make_scorer(metrics.r2_score)
                else:
                    scoring = metrics.make_scorer(metrics.mean_squared_error)

            else:
                scoring = 'accuracy'
            if generalize_across_time:
                estimator = GeneralizingEstimator(clf,
                                                  scoring=scoring,
                                                  n_jobs=n_jobs)
            else:
                estimator = SlidingEstimator(clf,
                                             scoring=scoring,
                                             n_jobs=n_jobs)

            scores = cross_val_multiscore(estimator=estimator,
                                          X=epochs_data,
                                          y=np.array(y_labels),
                                          cv=cv)
        else:
            scores = _run_cross_validation(X=epochs_data,
                                           y=np.array(y_labels),
                                           clf=clf,
                                           cv=cv)
            estimator = 'None'  # Estimator is not defined in the case of Riemannian decoding

    times = np.linspace(epochs.tmin, epochs.tmax, epochs_data.shape[2])

    return dict(procedure=procedure,
                estimator=estimator,
                scores=scores,
                pipeline=clf,
                preprocess=preprocess_pipeline,
                cv=cv,
                times=times,
                config=config)
Esempio n. 26
0
def pyR_decoding_on_full_epochs(X,
                                y,
                                plot_conf_matrix=0,
                                class_names=None,
                                test_size=0.2,
                                n_splits=5,
                                classifier='ERP_cov'):
    """ This function decodes on the full epoch using the pyRiemannian decoder
    cf https://github.com/Team-BK/Biomag2016/blob/master/Final_Submission.ipynb

    Parameters
    ---------
    X : data extracted from the epochs provided to the decoder
    y : categorical variable (i.e. discrete but it can be more then 2 categories)
    plot_confusion_matrix : set to 1 if you wanna see the confusion matrix
    class_names: needed for the legend if confusion matrices are plotted ['cat1','cat2','cat3']
    test_size : proportion of the data on which you wanna test the decoder
    n_splits : when calculating the score, number of cross-validation folds
    classifier : set it to 'ERP_cov', 'Xdawn_cov' or 'Hankel_cov' depending on the classification you want to do.

    Returns: scores, y_test, y_pred, cnf_matrix or just scores if you don't want the confusion matrix
    -------

    """

    # ------- define the classifier -------
    if classifier == 'ERP_cov':
        spatial_filter = UnsupervisedSpatialFilter(PCA(20), average=False)
        ERP_cov = ERPCovariances(estimator='lwf')
        CSP_30 = CSP(30, log=False)
        tang = TangentSpace('logeuclid')
        clf = make_pipeline(spatial_filter, ERP_cov, CSP_30, tang,
                            LogisticRegression('l2'))

    if classifier == 'Xdawn_cov':
        clf = make_pipeline(
            UnsupervisedSpatialFilter(PCA(50), average=False),
            XdawnCovariances(12, estimator='lwf', xdawn_estimator='lwf'),
            TangentSpace('logeuclid'), LogisticRegression('l2'))

    if classifier == 'Hankel_cov':
        clf = make_pipeline(
            UnsupervisedSpatialFilter(PCA(70), average=False),
            HankelCovariances(delays=[1, 8, 12, 64], estimator='oas'),
            CSP(15, log=False), TangentSpace('logeuclid'),
            LogisticRegression('l2'))

    cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=4343)
    y = np.asarray(y)
    scores = []
    for train_index, test_index in cv.split(X, y):
        print(train_index)
        print(test_index)
        print('we are in the CV loop')
        X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]
        # Train on X_train, y_train
        clf.fit(X_train, y_train)
        # Predict the category on X_test
        y_pred = clf.predict(X_test)

        scores.append(accuracy_score(y_true=y_test, y_pred=y_pred))
    scores = np.asarray(scores)

    if plot_conf_matrix == 1:

        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=test_size, random_state=7, stratify=y)
        print('train and test have been split')
        y_pred = clf.fit(X_train, y_train).predict(X_test)
        # Compute confusion matrix
        cnf_matrix = confusion_matrix(y_test, y_pred)
        np.set_printoptions(precision=2)
        print(cnf_matrix)

        # Plot non-normalized confusion matrix
        plt.figure()
        plot_confusion_matrix(cnf_matrix,
                              classes=class_names,
                              title='Confusion matrix, without normalization')

        # Plot normalized confusion matrix
        plt.figure()
        plot_confusion_matrix(cnf_matrix,
                              classes=class_names,
                              normalize=True,
                              title='Normalized confusion matrix')

        plt.show()
        return scores, y_test, y_pred, cnf_matrix

    return scores, y_test, y_pred, cnf_matrix
Esempio n. 27
0
def test_erp_covariances_svd_error(rndstate):
    # assert raise svd
    with pytest.raises(TypeError):
        ERPCovariances(svd="42")