Esempio n. 1
0
def transform_rct2str(source, target_train, target_test):

    covs_source = source['covs']
    covs_target_train = target_train['covs']
    covs_target_test = target_test['covs']

    source_pow = {}
    source_pow['covs'] = source['covs']
    source_pow['labels'] = source['labels']

    n = covs_source.shape[1]
    disp_source = np.sum(
        [distance_riemann(covi, np.eye(n))**2
         for covi in covs_source]) / len(covs_source)
    disp_target = np.sum(
        [distance_riemann(covi, np.eye(n))**2
         for covi in covs_target_train]) / len(covs_target_train)
    p = np.sqrt(disp_target / disp_source)

    target_pow_train = {}
    target_pow_train['covs'] = np.stack(
        [powm(covi, 1.0 / p) for covi in covs_target_train])
    target_pow_train['labels'] = target_train['labels']

    target_pow_test = {}
    target_pow_test['covs'] = np.stack(
        [powm(covi, 1.0 / p) for covi in covs_target_test])
    target_pow_test['labels'] = target_test['labels']

    return source_pow, target_pow_train, target_pow_test
Esempio n. 2
0
def dim_reduction_nrmesup(X, P, labels, params):

    K = X.shape[0]
    nc = X.shape[1]

    Sw = np.zeros((nc, nc))
    Sb = np.zeros((nc, nc))
    for i in range(K):
        ci = labels[i]
        for j in range(K):
            Ci, Cj = X[i, :, :], X[j, :, :]
            Sij = np.dot(invsqrtm(Ci), np.dot(Cj, invsqrtm(Ci)))
            if (i != j) & (labels[j] == ci):
                Sw = Sw + powm(logm(Sij), 2)
            if (i != j) & (labels[j] != ci):
                Sb = Sb + powm(logm(Sij), 2)

    M = np.dot(np.linalg.inv(Sw), Sb)
    g, U = np.linalg.eig(M)

    idx = g.argsort()[::-1]
    g = g[idx]
    U = U[:, idx]

    B, p = sp.linalg.polar(U)
    W = B[:, :P]

    return W
Esempio n. 3
0
def power_means(C, p):
    phi = 0.375/np.abs(p)    
    K = len(C)
    n = C[0].shape[0]
    w = np.ones(K)
    w = w/(1.0*len(w))
    G = np.sum([wk*powm(Ck, p) for (wk,Ck) in zip(w,C)], axis=0)
    if p > 0:
        X = invsqrtm(G)    
    else:
        X = sqrtm(G)    
    zeta = 10e-10
    test = 10*zeta
    while test > zeta:
        H = np.sum([wk*powm(np.dot(X, np.dot(powm(Ck, np.sign(p)), X.T)), np.abs(p)) for (wk,Ck) in zip(w,C)], axis=0)   
        X = np.dot(powm(H, -phi), X)
        test = 1.0/np.sqrt(n) * np.linalg.norm(H - np.eye(n))
    if p > 0:
        P = np.dot(np.linalg.inv(X), np.linalg.inv(X.T))    
    else:
        P = np.dot(X.T, X)        
    return P
Esempio n. 4
0
def dim_reduction_nrmelandmark(X, P, labels, params):

    K = X.shape[0]
    nc = X.shape[1]

    S = np.zeros((nc, nc))
    M = mean_riemann(X)
    for i in range(K):
        Ci = X[i, :, :]
        Sij = np.dot(invsqrtm(Ci), np.dot(M, invsqrtm(Ci)))
        S = S + powm(logm(Sij), 2)

    l, v = np.linalg.eig(S)
    idx = l.argsort()[::-1]
    l = l[idx]
    v = v[:, idx]

    W = v[:, :P]

    return W
Esempio n. 5
0
def dim_reduction_nrmeuns(X, P, labels, params):

    K = X.shape[0]
    nc = X.shape[1]

    S = np.zeros((nc, nc))

    for i in range(K):
        for j in range(K):
            if i != j:
                Ci, Cj = X[i, :, :], X[j, :, :]
                Sij = np.dot(invsqrtm(Ci), np.dot(Cj, invsqrtm(Ci)))
                S = S + powm(logm(Sij), 2)

    l, v = np.linalg.eig(S)
    idx = l.argsort()[::-1]
    l = l[idx]
    v = v[:, idx]

    W = v[:, :P]

    return W
Esempio n. 6
0
def test_powm():
    """Test matrix power"""
    C = 2 * np.eye(3)
    Ctrue = (2**0.5) * np.eye(3)
    assert_array_almost_equal(powm(C, 0.5), Ctrue)
Esempio n. 7
0
def test_powm():
    """Test matrix power"""
    C = 2*np.eye(3)
    Ctrue = (2**0.5)*np.eye(3)
    assert_array_almost_equal(powm(C,0.5),Ctrue)