Esempio n. 1
0
    def test_transform(self):
        for tfm in [None, ILRTransform, ALRTransform]:
            with self.subTest(tfm=tfm):
                if callable(tfm):
                    T = tfm()
                    comp = T.transform(self.comp3d)
                    transform = T.inverse_transform
                else:
                    transform = None
                    comp = self.comp2d

                plot_pca_vectors(comp, transform=transform)
Esempio n. 2
0
    comp.loc[:, chem].pyroplot.scatter(ax=ax[0], c=t10b3[ix], **kwargs)
plt.show()
#######################################################################################
# We can take the mean and covariance in log-space to create covariance ellipses and
# vectors using principal component analysis:
#
kwargs = dict(ax=ax[1], transform=from_log, nstds=3)
ax[1].set_title("Covariance Ellipses and PCA Vectors")
for ix, sample in enumerate(df.Sample.unique()):
    comp = df.query("Sample == {}".format(sample))
    tcomp = to_log(comp.loc[:, chem])
    plot_stdev_ellipses(tcomp.values,
                        color=t10b3[ix],
                        resolution=1000,
                        **kwargs)
    plot_pca_vectors(tcomp.values, ls="-", lw=0.5, color="k", **kwargs)
plt.show()
#######################################################################################
# We can also look at data density (here using kernel density estimation)
# in logratio-space:
#
kwargs = dict(ax=ax[-2], bins=100, axlabels=False)
ax[-2].set_title("Individual Density, with Contours")

for ix, sample in enumerate(df.Sample.unique()):
    comp = df.query("Sample == {}".format(sample))
    comp.loc[:, chem].pyroplot.density(cmap="Blues", vmin=0.05, **kwargs)
    comp.loc[:, chem].pyroplot.density(
        contours=[0.68, 0.95],
        cmap="Blues_r",
        contour_labels={
Esempio n. 3
0
 def test_default(self):
     for comp in [self.comp2d, self.comp3d]:
         with self.subTest(comp=comp):
             plot_pca_vectors(comp)
Esempio n. 4
0
 def test_axis_specified(self):
     for comp in [self.comp2d, self.comp3d]:
         with self.subTest(comp=comp):
             fig, ax = plt.subplots()
             plot_pca_vectors(comp, ax=ax)