Esempio n. 1
0
    def computeWeights(self,
                       sources,
                       interferers,
                       R_n,
                       delay=0.03,
                       epsilon=5e-3):

        dist_mat = pra.distance(self.R, sources)
        s_time = dist_mat / pra.c
        s_dmp = 1. / (4 * np.pi * dist_mat)

        dist_mat = pra.distance(self.R, interferers)
        i_time = dist_mat / pra.c
        i_dmp = 1. / (4 * np.pi * dist_mat)

        offset = np.maximum(s_dmp.max(),
                            i_dmp.max()) / (np.pi * self.Fs * epsilon)
        t_min = np.minimum(s_time.min(), i_time.min())
        t_max = np.maximum(s_time.max(), i_time.max())

        s_time -= t_min - offset
        i_time -= t_min - offset
        Lh = int((t_max - t_min + 2 * offset) * float(self.Fs))

        if ((Lh - 1) > (self.M - 1) * self.Lg):
            import warnings
            wng = "Beamforming filters length (%d) are shorter than minimum required (%d)." % (
                self.Lg, Lh)
            warnings.warn(wng, UserWarning)

        # the channel matrix
        Lg = self.Lg
        L = self.Lg + Lh - 1
        H = np.zeros((Lg * self.M, 2 * L))

        for r in np.arange(self.M):

            hs = pra.lowPassDirac(s_time[r, :, np.newaxis], s_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            row = np.pad(hs, ((0, L - len(hs))), mode='constant')
            col = np.pad(hs[:1], ((0, Lg - 1)), mode='constant')
            H[r * Lg:(r + 1) * Lg, 0:L] = toeplitz(col, row)

            hi = pra.lowPassDirac(i_time[r, :, np.newaxis], i_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            row = np.pad(hi, ((0, L - len(hi))), mode='constant')
            col = np.pad(hi[:1], ((0, Lg - 1)), mode='constant')
            H[r * Lg:(r + 1) * Lg, L:2 * L] = toeplitz(col, row)

        # the constraint vector
        kappa = int(delay * self.Fs)
        #kappa = np.minimum(int(0.6*(Lh+Lg)), int(2*t_max*self.Fs))
        h = H[:, kappa]

        # We first assume the sample are uncorrelated
        R_xx = np.dot(H[:, :L], H[:, :L].T)
        K_nq = np.dot(H[:, L:], H[:, L:].T) + R_n

        # Compute the TD filters
        C = la.cho_factor(R_xx + K_nq, check_finite=False)
        g_val = la.cho_solve(C, h)

        g_val /= np.inner(h, g_val)
        self.filters = g_val.reshape((self.M, Lg))
        '''
        import matplotlib.pyplot as plt
        plt.figure()
        plt.subplot(2,1,1)
        plt.plot(np.arange(L)/float(self.Fs), np.dot(H[:,:L].T, g_val))
        plt.plot(np.arange(L)/float(self.Fs), np.dot(H[:,L:].T, g_val))
        plt.legend(('Channel of desired source','Channel of interferer'))
        plt.subplot(2,1,2)
        for m in np.arange(self.M):
            plt.plot(np.arange(Lh)/float(self.Fs), H[m*Lg,:Lh])
        '''

        # compute and return SNR
        num = np.inner(g_val.T, np.dot(R_xx, g_val))
        denom = np.inner(np.dot(g_val.T, K_nq), g_val)

        return num / denom
Esempio n. 2
0
    def computeWeights(self, sources, interferers, R_n, epsilon=5e-3):

        dist_mat = pra.distance(self.R, sources)
        s_time = dist_mat / pra.c
        s_dmp = 1. / (4 * np.pi * dist_mat)

        dist_mat = pra.distance(self.R, interferers)
        i_time = dist_mat / pra.c
        i_dmp = 1. / (4 * np.pi * dist_mat)

        # compute offset needed for decay of sinc by epsilon
        offset = np.maximum(s_dmp.max(),
                            i_dmp.max()) / (np.pi * self.Fs * epsilon)
        t_min = np.minimum(s_time.min(), i_time.min())
        t_max = np.maximum(s_time.max(), i_time.max())

        # adjust timing
        s_time -= t_min - offset
        i_time -= t_min - offset
        Lh = np.ceil((t_max - t_min + 2 * offset) * float(self.Fs))

        # the channel matrix
        K = sources.shape[1]
        Lg = self.Lg
        off = (Lg - Lh) / 2
        L = self.Lg + Lh - 1

        H = np.zeros((Lg * self.M, 2 * L))
        As = np.zeros((Lg * self.M, K))

        for r in np.arange(self.M):

            # build constraint matrix
            hs = pra.lowPassDirac(s_time[r, :, np.newaxis], s_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh)[:, ::-1]
            As[r * Lg + off:r * Lg + Lh + off, :] = hs.T

            # build interferer RIR matrix
            hx = pra.lowPassDirac(s_time[r, :, np.newaxis], s_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            H[r * Lg:(r + 1) * Lg, :L] = pra.convmtx(hx, Lg).T

            # build interferer RIR matrix
            hq = pra.lowPassDirac(i_time[r, :, np.newaxis], i_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            H[r * Lg:(r + 1) * Lg, L:] = pra.convmtx(hq, Lg).T

        ones = np.ones((K, 1))

        # We first assume the sample are uncorrelated
        K_x = np.dot(H[:, :L], H[:, :L].T)
        K_nq = np.dot(H[:, L:], H[:, L:].T) + R_n

        # Compute the TD filters
        K_nq_inv = np.linalg.inv(K_x + K_nq)
        C = np.dot(K_nq_inv, As)
        B = np.linalg.inv(np.dot(As.T, C))
        g_val = np.dot(C, np.dot(B, ones))
        self.filters = g_val.reshape((self.M, Lg))

        import matplotlib.pyplot as plt
        plt.figure()
        plt.subplot(3, 1, 1)
        plt.plot(np.arange(L) / float(self.Fs), np.dot(H[:, :L].T, g_val))
        plt.plot(np.arange(L) / float(self.Fs), np.dot(H[:, L:].T, g_val))
        plt.legend(('Channel of desired source', 'Channel of interferer'))
        plt.subplot(3, 1, 2)
        for m in np.arange(self.M):
            plt.plot(np.arange(Lh) / float(self.Fs), H[m * Lg, :Lh])
        plt.subplot(3, 1, 3)
        for m in np.arange(self.M):
            plt.plot(np.arange(Lh) / float(self.Fs), H[m * Lg, L:L + Lh])

        # compute and return SNR
        A = np.dot(g_val.T, H[:, :L])
        num = np.dot(A, A.T)
        denom = np.dot(np.dot(g_val.T, K_nq), g_val)

        return num / denom
Esempio n. 3
0
    def computeWeights(self,
                       sources,
                       interferers,
                       R_n,
                       delay=None,
                       epsilon=5e-3):

        dist_mat = pra.distance(self.R, sources)
        s_time = dist_mat / pra.c
        s_dmp = 1. / (4 * np.pi * dist_mat)

        dist_mat = pra.distance(self.R, interferers)
        i_time = dist_mat / pra.c
        i_dmp = 1. / (4 * np.pi * dist_mat)

        # compute offset needed for decay of sinc by epsilon
        offset = np.maximum(s_dmp.max(),
                            i_dmp.max()) / (np.pi * self.Fs * epsilon)
        t_min = np.minimum(s_time.min(), i_time.min())
        t_max = np.maximum(s_time.max(), i_time.max())

        # adjust timing
        s_time -= t_min - offset
        i_time -= t_min - offset
        Lh = int((t_max - t_min + 2 * offset) * float(self.Fs))

        # the channel matrix
        K = sources.shape[1]
        Lg = self.Lg
        off = (Lg - Lh) / 2
        L = self.Lg + Lh - 1

        H = np.zeros((Lg * self.M, 2 * L))

        for r in np.arange(self.M):

            # build interferer RIR matrix
            hx = pra.lowPassDirac(s_time[r, :, np.newaxis], s_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            H[r * Lg:(r + 1) * Lg, :L] = pra.convmtx(hx, Lg).T

            # build interferer RIR matrix
            hq = pra.lowPassDirac(i_time[r, :, np.newaxis], i_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            H[r * Lg:(r + 1) * Lg, L:] = pra.convmtx(hq, Lg).T

        # We first assume the sample are uncorrelated
        K_s = np.dot(H[:, :L], H[:, :L].T)
        K_nq = np.dot(H[:, L:], H[:, L:].T) + R_n

        # Compute TD filters using generalized Rayleigh coefficient maximization
        SINR, v = la.eigh(K_s,
                          b=K_nq,
                          eigvals=(self.M * Lg - 1, self.M * Lg - 1),
                          overwrite_a=True,
                          overwrite_b=True,
                          check_finite=False)
        g_val = np.real(v[:, 0])

        self.filters = g_val.reshape((self.M, Lg))
        '''
        import matplotlib.pyplot as plt
        plt.figure()
        plt.plot(np.arange(L)/float(self.Fs), np.dot(H[:,:L].T, g_val))
        plt.plot(np.arange(L)/float(self.Fs), np.dot(H[:,L:].T, g_val))
        plt.legend(('Channel of desired source','Channel of interferer'))
        '''

        # compute and return SNR
        return SINR[0]
Esempio n. 4
0
    def computeWeights(self,
                       sources,
                       interferers,
                       R_n,
                       delay=0.03,
                       epsilon=5e-3):

        dist_mat = pra.distance(self.R, sources)
        s_time = dist_mat / pra.c
        s_dmp = 1. / (4 * np.pi * dist_mat)

        dist_mat = pra.distance(self.R, interferers)
        i_time = dist_mat / pra.c
        i_dmp = 1. / (4 * np.pi * dist_mat)

        # compute offset needed for decay of sinc by epsilon
        offset = np.maximum(s_dmp.max(),
                            i_dmp.max()) / (np.pi * self.Fs * epsilon)
        t_min = np.minimum(s_time.min(), i_time.min())
        t_max = np.maximum(s_time.max(), i_time.max())

        # adjust timing
        s_time -= t_min - offset
        i_time -= t_min - offset
        Lh = int((t_max - t_min + 2 * offset) * float(self.Fs))

        # the channel matrix
        K = sources.shape[1]
        Lg = self.Lg
        off = (Lg - Lh) / 2
        L = self.Lg + Lh - 1

        H = np.zeros((Lg * self.M, 2 * L))

        for r in np.arange(self.M):

            # build interferer RIR matrix
            hx = pra.lowPassDirac(s_time[r, :, np.newaxis], s_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            H[r * Lg:(r + 1) * Lg, :L] = pra.convmtx(hx, Lg).T

            # build interferer RIR matrix
            hq = pra.lowPassDirac(i_time[r, :, np.newaxis], i_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            H[r * Lg:(r + 1) * Lg, L:] = pra.convmtx(hq, Lg).T

        # We first assume the sample are uncorrelated
        K_nq = np.dot(H[:, L:], H[:, L:].T) + R_n

        # constraint
        kappa = int(delay * self.Fs)
        kappa = (Lh + Lg) / 2
        A = H[:, :L]
        b = np.zeros((L, 1))
        b[kappa, 0] = 1

        # filter computation
        C = la.cho_factor(K_nq, overwrite_a=True, check_finite=False)
        B = la.cho_solve(C, A)
        D = np.dot(A.T, B)
        C = la.cho_factor(D, overwrite_a=True, check_finite=False)
        x = la.cho_solve(C, b)
        g_val = np.dot(B, x)

        # reshape and store
        self.filters = g_val.reshape((self.M, self.Lg))
        '''
        import matplotlib.pyplot as plt
        plt.figure()
        plt.plot(np.arange(L)/float(self.Fs), np.dot(H[:,:L].T, g_val))
        plt.plot(np.arange(L)/float(self.Fs), np.dot(H[:,L:].T, g_val))
        plt.legend(('Channel of desired source','Channel of interferer'))
        '''

        # compute and return SNR
        A = np.dot(g_val.T, H[:, :L])
        num = np.dot(A, A.T)
        denom = np.dot(np.dot(g_val.T, K_nq), g_val)

        return num / denom
Esempio n. 5
0
    def computeWeights(self,
                       sources,
                       interferers,
                       R_n,
                       delay=0.03,
                       epsilon=5e-3):

        dist_mat = pra.distance(self.R, sources)
        s_time = dist_mat / pra.c
        s_dmp = 1. / (4 * np.pi * dist_mat)

        dist_mat = pra.distance(self.R, interferers)
        i_time = dist_mat / pra.c
        i_dmp = 1. / (4 * np.pi * dist_mat)

        # compute offset needed for decay of sinc by epsilon
        offset = np.maximum(s_dmp.max(),
                            i_dmp.max()) / (np.pi * self.Fs * epsilon)
        t_min = np.minimum(s_time.min(), i_time.min())
        t_max = np.maximum(s_time.max(), i_time.max())

        # adjust timing
        s_time -= t_min - offset
        i_time -= t_min - offset
        Lh = int((t_max - t_min + 2 * offset) * float(self.Fs))

        # the channel matrix
        K = sources.shape[1]
        Lg = self.Lg
        off = (Lg - Lh) / 2
        L = self.Lg + Lh - 1

        H = np.zeros((Lg * self.M, 2 * L))

        for r in np.arange(self.M):

            # build interferer RIR matrix
            hx = pra.lowPassDirac(s_time[r, :, np.newaxis], s_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            H[r * Lg:(r + 1) * Lg, :L] = pra.convmtx(hx, Lg).T

            # build interferer RIR matrix
            hq = pra.lowPassDirac(i_time[r, :, np.newaxis], i_dmp[r, :,
                                                                  np.newaxis],
                                  self.Fs, Lh).sum(axis=0)
            H[r * Lg:(r + 1) * Lg, L:] = pra.convmtx(hq, Lg).T

        # Delay of the system in samples
        kappa = int(delay * self.Fs)
        precedence = int(0.030 * self.Fs)

        # the constraint
        n = np.minimum(L, kappa + precedence)
        Hnc = H[:, :kappa]
        Hpr = H[:, kappa:n]
        Hc = H[:, n:L]
        A = np.dot(Hpr, Hpr.T)
        B = np.dot(Hnc, Hnc.T) + np.dot(Hc, Hc.T) + np.dot(
            H[:, L:], H[:, L:].T) + R_n

        # solve the problem
        SINR, v = la.eigh(A,
                          b=B,
                          eigvals=(self.M * Lg - 1, self.M * Lg - 1),
                          overwrite_a=True,
                          overwrite_b=True,
                          check_finite=False)
        g_val = np.real(v[:, 0])

        # reshape and store
        self.filters = g_val.reshape((self.M, self.Lg))

        import matplotlib.pyplot as plt
        plt.figure()
        plt.subplot(3, 1, 1)
        plt.plot(np.arange(L) / float(self.Fs), np.dot(H[:, :L].T, g_val))
        plt.plot(np.arange(L) / float(self.Fs), np.dot(H[:, L:].T, g_val))
        plt.legend(('Channel of desired source', 'Channel of interferer'))
        plt.subplot(3, 1, 2)
        plt.plot(np.abs(np.fft.rfft(np.dot(H[:, :L].T, g_val))))

        plt.subplot(3, 1, 3)
        for m in np.arange(self.M):
            plt.plot(np.abs(np.fft.rfft(H[m * self.Lg, :L])))

        # compute and return SNR
        return SINR[0]