def __init__( self, pose: object = None, # pyrosetta.rosetta.core.pose.Pose, Pose of starting structure score: object = None, # pyrosetta.ScoreFunction, # scorefunction from pyrosetta seq_mover: object = None, # pyrosetta.rosetta.protocols.moves.SequenceMover, # sequence of moves between MC evaluations n_steps: int = 1000000, kT: float = 1, output: bool = True, out_freq: int = 500, ): super().__init__() # initialize input values self.pose = pose self._score = score self.seq_mover = seq_mover self._kT = kT self.n_steps = n_steps self._output = output self._out_freq = out_freq if self._output is False: self._out_freq = n_steps # Build MC Object self.mc = pyrosetta.MonteCarlo(self.pose, self._score, self._kT) self.mc_trial = pyrosetta.TrialMover(self.seq_mover, self.mc) if self._output: self.pymol = pyrosetta.PyMOLMover() print("Initial Energy :", self.get_energy())
def build_trial_mc_alg(self, mover): """ Write any sequence mover (stored in 'folding_protocols') to a trial object for MC simulations. Depends on MC mover, so change any mc parameters (kT, pose, etc.) before running this. mover: mover object to be added to TrialMover object """ self.trial_mc = pyrosetta.TrialMover(mover, self.mc)
def monte_carlo_fixed(self, pose, mover, score_function, temperature, trajectory, fixed_moves): """Performs Metropolis Monte Carlo (MMC) search with a specified move, a fixed number of times in different trajectories. Each trajectory is created by performing moves from the initial conformation passed in the argument. Args: pose: A pyrosetta Pose object containing initial conformation. mover: A pyrosetta Mover object derermining the moves in MMC search. score_function: A pyrosetta ScoreFunction object for scoring each move. temperature: An int/float defining the temperature of MMC search. trajectory: A positive int indicating the number of trajectories. fixed_moves: A positive int indicating the number of moves in each trajectory. Returns: A list containing the population generated by the MMC search. """ population = [] # Perform MMC on all trajectories for i in range(trajectory): new_pose = pr.Pose() new_pose.assign(pose) mc = pr.MonteCarlo(new_pose, score_function, temperature) trial_mover = pr.TrialMover(mover, mc) # Perform MMC for a fixed number of moves for j in range(fixed_moves): trial_mover.apply(new_pose) pose_ca_rmsd = pr.rosetta.core.scoring.CA_rmsd( self.native_pose, new_pose) if pose_ca_rmsd < self.last_op_min_ca_rmsd: self.last_op_min_ca_rmsd = pose_ca_rmsd self.last_op_min_ca_rmsd_pose.assign(new_pose) population.append(new_pose) # Bookkeeping self.last_op_energy_evals = (fixed_moves * trajectory) self.total_energy_evals += (fixed_moves * trajectory) if self.last_op_min_ca_rmsd < self.min_ca_rmsd: self.min_ca_rmsd = self.last_op_min_ca_rmsd self.min_ca_rmsd_pose.assign(self.last_op_min_ca_rmsd_pose) return population
def __init__(self, sequence, BBB_angle=120, BBBB_dihe=180, file_name='outputs/traj.pdb', energy_graph_output=False): """ folding object used for easily implementing different movers into a single folding algorithm. Arguments --------- sequence : str Sequence of CG residues BBB_angle : float Desired angle of all B-B-B angles. Generalizes to all backbone models (not working) BBBB_angle : float Desired dihedral of all B-B-B-B torsion angles. Generalizes to all backbone models (not working) """ # Build CG model and set desired initial angles self.pose = pyrosetta.pose_from_sequence(sequence, auto_termini=False) self.energy_graph_output = energy_graph_output # self.pose = self.set_BBB_angles(self.pose, BBB_angle) # self.pose = self.set_BBBB_dihe(self.pose, BBBB_dihe) # PyMOL mover, if wanting to visualize self.pymol = pyrosetta.PyMOLMover() self.pymol.apply(self.pose) # randomizer = CG_movers.randomizeBackBone(self.pose) # randomizer.apply(self.pose) self.pymol.apply(self.pose) # Building PDBTrajWriter object, used for writing multiple structures # to a single file self.PDB_writer = pyrosetta.rosetta.protocols.canonical_sampling.PDBTrajectoryRecorder( ) # self.PDB_writer.apply(self.pose) # write initial structure self.PDB_writer.file_name('outputs/traj.pdb') self.PDB_writer.stride(100) # Define scorefunction terms self.scorefxn = pyrosetta.ScoreFunction() self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.fa_rep, 1) self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.fa_atr, 1) self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.fa_intra_atr, 1) self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.fa_intra_rep, 1) self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.mm_twist, 1) self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.mm_bend, 1) # self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.mm_lj_inter_rep, 1) # segfaults beware! # self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.mm_lj_inter_atr, 1) # self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.mm_lj_intra_rep, 1) # self.scorefxn.set_weight(pyrosetta.rosetta.core.scoring.mm_lj_intra_atr, 1) # Build standard CG 1-1 movers self.small = CG_movers.CGSmallMover(self.pose) # self.shear = CG_movers.CGShearMover(self.pose) self.small_angle = CG_movers.CGSmallAngleMover(self.pose) # Build minimization movers self.mini = pyrosetta.rosetta.protocols.minimization_packing.MinMover() self.mini.min_type('lbfgs_armijo_nonmonotone') self.movemap = pyrosetta.MoveMap() self.mini.score_function(self.scorefxn) # for atom in self.small_angle.bb_atoms: # self.movemap.set(pyrosetta.rosetta.core.id.DOF_ID(atom , pyrosetta.rosetta.core.id.THETA), True) self.movemap.set_bb_true_range(1, self.pose.size()) self.mini.movemap(self.movemap) # Build MC object + Trial Mover (empty for now) self.mc = pyrosetta.MonteCarlo(self.pose, self.scorefxn, 1) self.trial_mc = pyrosetta.TrialMover() # Building variable to store various folding algorithms self.folding_protocols = {} # Adding a default mover self.build_fold_alg('default') self.add_folding_move('default', pyrosetta.RepeatMover(self.small, 10)) # self.add_folding_move('default', pyrosetta.RepeatMover(self.shear, 10)) self.add_folding_move('default', pyrosetta.RepeatMover(self.mini, 10))
def kT(self, kT): self._kT = kT self.mc.set_temperature(self.kT) self.mc_trial = pyrosetta.TrialMover(self.seq_mover, self.mc)