Esempio n. 1
0
def get_pos_SR(min_variable_number, max_variable_number, clause_number):
    variable_number = random.randint(min_variable_number, max_variable_number)
    clauses = []
    solver = Minisat22()
    while solver.solve():
        clause = get_SR(variable_number)
        solver.add_clause(clause)
        clauses.append(clause)
        if len(clauses) > clause_number:
            clauses = []
            solver.delete()
            solver = Minisat22()
    clauses = clauses[:-1]
    return CNF(clauses)
Esempio n. 2
0
def _optimize(epeg, constraints, top_id, lower_bound, upper_bound, model):

    if lower_bound <= upper_bound:

        cost = int((2 * lower_bound + upper_bound) / 3)

        lits = []
        weights = []
        for key, value in epeg.nodes.items():
            lits.append(key)
            weights.append(value.cost)

        object_function = PBEnc.leq(lits=lits,
                                    weights=weights,
                                    bound=cost,
                                    top_id=top_id)

        cnf = CNF(from_clauses=constraints.clauses + object_function.clauses)
        solver = Minisat22()
        solver.append_formula(cnf.clauses)

        if solver.solve():
            model = solver.get_model()
            return _optimize(epeg, constraints, top_id, lower_bound, cost - 1,
                             model)
        else:
            return _optimize(epeg, constraints, top_id, cost + 1, upper_bound,
                             model)

    return model, lower_bound
Esempio n. 3
0
def solve_problem(problem):
    n_police = problem['police']
    n_medics = problem['medics']
    observations = problem['observations']
    queries = problem['queries']
    n_rows = len(observations[0])
    n_cols = len(observations[0][0])
    n_time = len(observations) + 1 + 3  # All the information we could have
    var_pool, formula = make_formula(n_police, n_medics, n_rows, n_cols,
                                     n_time)
    assumptions = [
        var_pool.id(f'({r}, {c}), {t}, {s}')
        for t, obs in enumerate(observations) for r, row in enumerate(obs)
        for c, s in enumerate(row) if s != '?'
    ]
    results = {query: '?' for query in queries}
    with Minisat22(bootstrap_with=formula) as solver:
        for query in results:
            (r, c), t, s = query
            with_query = solver.solve(assumptions +
                                      [var_pool.id(f'({r}, {c}), {t}, {s}')])
            with_not_query = solver.solve(
                assumptions + [-var_pool.id(f'({r}, {c}), {t}, {s}')])
            if with_query and not with_not_query:
                results[query] = 'T'
            elif with_not_query and not with_query:
                results[query] = 'F'
    return results
Esempio n. 4
0
def SATSolver(clauses):
    m = Minisat22()
    # m.conf_budget(1000)
    m.prop_budget(2000)  # adding limit on solver
    for clause in clauses:
        m.add_clause(clause)
    return m.solve_limited()
Esempio n. 5
0
def main():

    variable_size_list = [
        10, 100, 1000
    ]  # each item in this list is used to generate a horn variable of that size
    avg_time_for_variable_size_set = [
    ]  # this list is maintained to compare the time increase per formula size
    for numb_of_variables in variable_size_list:
        linear_horn = horn_variable_generator(numb_of_variables)  # instance of
        horn_formula = linear_horn.build_using_pysat(
        )  # generate a horn variable of size numb_of_variables

        avg_time = 0
        numb_runs = 10  # average the time to solve over numb_run runs of the sat solver.
        for i in range(1, numb_runs):
            with Minisat22(bootstrap_with=horn_formula, use_timer=True) as m:
                m.solve()  # solve using minisat

                avg_time += m.time()  # accumulate the time used in the solver
        avg_time = avg_time / numb_runs  # find the real average over numb_run minisat calls
        avg_time_for_variable_size_set.append(
            avg_time)  # maintain a list of average times for# [a, b, c]

    # this loop prints the time increase per formula
    for index, time in enumerate(avg_time_for_variable_size_set[:-1]):
        time_diff = avg_time_for_variable_size_set[index + 1] / time

        print "\n" "It takes ", time_diff, " times longer to compute", variable_size_list[
            index +
            1], " variables than ", variable_size_list[index], " variables"
Esempio n. 6
0
 def satisfiable(self):
     solver = Minisat22()
     for clause in self.clauses:
         solver.add_clause(clause)
     result = solver.solve()
     solver.delete()
     return result
Esempio n. 7
0
def solve_CNF_core(clauses):
    global calls
    calls += 1
    solver = Minisat22(bootstrap_with=clauses)
    res = solver.solve()
    core = solver.get_core()
    solver.delete()
    return (res, core)
def sol_4C():
    s = Minisat22()

    # Link Symbols
    link_symbols(s, varmap2)

    # Make sure that no two students walk out twice in a group across the seven days
    for (i, j) in itertools.combinations(range(n_student), 2):
        clauses = []
        for d in range(n_day):
            for g in range(n_group):
                clauses.append(varmap2[(d, g, (i, j))])
        for (c1, c2) in itertools.combinations(clauses, 2):
            s.add_clause([-c1, -c2])

    # Make sure that every student is assigned and only assigned one group every day
    for i in range(n_day):
        for j in range(n_student):
            groups = [varmap2[(i, g, j)] for g in range(n_group)]
            for (g1, g2) in itertools.combinations(groups, 2):
                s.add_clause([-g1, -g2])
            s.add_clause(groups)

    # Make sure that every group has three students every day
    for i in range(n_day):
        for j in range(n_group):
            for (s1, s2, s3) in itertools.combinations(range(n_student), 3):
                c1 = varmap2[(i, j, (s1, s2))]
                c2 = varmap2[(i, j, (s1, s3))]
                c3 = varmap2[(i, j, (s2, s3))]
                s.add_clause([-c1, -c2, c3])
                s.add_clause([-c1, -c3, c2])
                s.add_clause([-c2, -c3, c1])

    s.solve()
    res = [s.get_model()]
    for _ in range(9):
        curr = res[-1]
        clause = []
        for i in range(len(curr)):
            clause.append(-curr[i])
        s.add_clause(clause)
        s.solve()
        res.append(s.get_model())
    return res
Esempio n. 9
0
def minisat22_satisfiable(expr, all_models=False, minimal=False):

    if not isinstance(expr, EncodedCNF):
        exprs = EncodedCNF()
        exprs.add_prop(expr)
        expr = exprs

    from pysat.solvers import Minisat22

    # Return UNSAT when False (encoded as 0) is present in the CNF
    if {0} in expr.data:
        if all_models:
            return (f for f in [False])
        return False

    r = Minisat22(expr.data)

    if minimal:
        r.set_phases([-(i + 1) for i in range(r.nof_vars())])

    if not r.solve():
        return False

    if not all_models:
        return {expr.symbols[abs(lit) - 1]: lit > 0 for lit in r.get_model()}

    else:
        # Make solutions sympy compatible by creating a generator
        def _gen(results):
            satisfiable = False
            while results.solve():
                sol = results.get_model()
                yield {expr.symbols[abs(lit) - 1]: lit > 0 for lit in sol}
                if minimal:
                    results.add_clause([-i for i in sol if i > 0])
                else:
                    results.add_clause([-i for i in sol])
                satisfiable = True
            if not satisfiable:
                yield False
            raise StopIteration

        return _gen(r)
Esempio n. 10
0
def compute_unsat_core(clauses, start_index):
    # attach selector literal
    # print("clauses:", clauses)
    clauses_with_indices = []
    index = start_index
    refs = []
    for cl in clauses:
        clauses_with_indices.append(cl + [-index])
        refs.append(index)
        index += 1

    # solve with minisat
    with Minisat22(bootstrap_with=clauses_with_indices) as m:
        status = m.solve(assumptions=refs)
        # print("status:", status)
        unsat_core = m.get_core()
        if unsat_core is None:
            model = m.get_model()
            # print("start_index:", start_index)
            # print("sat model size:", len(model) )
            # print("model:", model)
            return True, [x for x in model if abs(x) < start_index]
        else:
            return False, sorted([x - start_index for x in unsat_core])
Esempio n. 11
0
    s1.add_clause([-2, 3])
    s1.add_clause([-3, 4])

    if s1.solve() == True:
        print(s1.get_model())

    print('blocking models:')
    m = s1.get_model()
    s1.add_clause([-l for l in m])  # actual blocking

    if s1.solve() == True:
        print(s1.get_model())  # should compute another model
    s1.delete()  # this is needed if used not within the 'with' context

    print('model enumeration + bootstrapping the solver:')
    s2 = Minisat22(bootstrap_with=[[-1, 2], [-2, 3], [-3, 4]
                                   ])  # also working with MiniSat22 directly
    for m in s2.enum_models():  # implemented as a generator
        print(m)
    s2.delete()

    print('\'with\' constructor + assumptions:')
    with Solver(name='mgh', bootstrap_with=[[-1, 2], [-2, 3], [-3, 4]]) as s3:
        for m in s3.enum_models(assumptions=[5]):
            print(m)

        # no s3.delete() is needed -- it is called automatically if used in the 'with' environment

    print('appending formula and extracting an unsat core:')
    with Glucose3(bootstrap_with=[[-1, 2], [-2, 3]]) as s4:
        s4.append_formula([[-3, 4], [-4, 5]])
Esempio n. 12
0
def get_solution(pysat_list, assumptions, vpool):
    solution_dict = {}
    g = Minisat22
    # print(pysat_list)
    area_type = ['H', 'S', 'U']
    for assumption in assumptions:
        s_b = '{}_{}_{}_{}'.format(assumption[2], assumption[0][0],
                                   assumption[0][1], assumption[1])
        # n_s = '~{}_{}_{}_{}'.format(assumption[2], assumption[0][0], assumption[0][1], assumption[1])
        s = generate_clause(s_b, vpool)
        # n_s = generate_clause(n_s, vpool)
        #sub_s = []
        #sub_s.append(s)
        sub_s = [
            '{}_{}_{}_{}'.format(area, assumption[0][0], assumption[0][1],
                                 assumption[1]) for area in area_type
            if area is not assumption[2]
        ]
        sub_s.append(s_b)
        #print(sub_s)
        #print(s, n_s)
        ###print("clause:", s[0])
        solution_list = []
        for sub_assumption in sub_s:

            sub_assumption = generate_clause(sub_assumption, vpool)
            with Minisat22(bootstrap_with=pysat_list) as m:
                #print(m.solve(assumptions=s[0]))
                #result = m.solve(assumptions=s[0])
                solution_list.append(m.solve(assumptions=sub_assumption[0]))
            m.delete()
        if solution_list.count(1) > 1:
            solution_dict[assumption] = '?'
        elif solution_list[2]:
            solution_dict[assumption] = "T"
        else:
            solution_dict[assumption] = "F"
            # if result:
            #    solution_dict[assumption] = "T"
            # else:
            #    solution_dict[assumption] = "F"

    #solution_dict = {}
    return solution_dict


# def get_general_assumptions(true_assumptions, input, areas, vpool):
#     matrix = input["observations"]
#     shape = np.shape(matrix)  # t, i , j
#     # print(shape)
#     dimentions = [shape[1], shape[2]]
#     epoch = shape[0]
#     type1 = ['H', 'S', 'U']
#     type2 = ['S', 'U', 'H']
#     type3 = ['U', 'H', 'S']
#     for area in areas["?"]:
#         for i in range(len(type1)):
#             cl_str = "~{3}_{0}_{1}_{2} | ~{4}_{0}_{1}_{2}".format(area[0], area[1], area[2], type1[i], type2[i])
#             true_assumptions.append(str(cl_str))
#             cl_str = "~{3}_{0}_{1}_{2} | ~{4}_{0}_{1}_{2}".format(area[0], area[1], area[2], type1[i], type3[i])
#             true_assumptions.append(str(cl_str))
#     for area_type in ['S', '?']:
#         for area in areas[area_type]:
#             if area[2] > 0:
#                 neighbours_list = find_neighbours(dimentions, area[0], area[1], area[2] - 1)
#                 #neighbours_list = []  # find_neighbours(dimentions, area[0], area[1], area[2] - 1)
#                 cl_str = "~H_{0}_{1}_{2} | ~S_{0}_{1}_{3}".format(area[0], area[1], area[2] - 1, area[2])
#                 for n in neighbours_list:
#                     cl_str += " | " + "S_{0}_{1}_{2} & ~H_{0}_{1}_{2}".format(n[0], n[1], n[2])
#                 #print(cl_str)
#                 #print(to_cnf("A & B ==> ((C & ~D) | (E & ~F))"))
#                 cl_str = str(to_cnf(cl_str))
#                 #print("from gen_list: ", cl_str)
#                 x = cl_str.split('&')
#                 for clause in x:
#                     #print("clause: ", clause)
#                     true_assumptions.append(clause)
#                 #true_assumptions.append(str(cl_str))
#
#                 # print("n_list of area: ", area, neighbours_list)
#             # for n in neighbours_list:
#
#             # if area[2] < epoch - 1:
#             #     if matrix[n[2]][n[0]][n[1]] == 'H' or matrix[n[2]][n[0]][n[1]] == '?':
#             # a=> a or a=> b
#     # s = '{}_{}_{}_{} & {}_{}_{}_{} & {}_{}_{}_{}'
#     return
Esempio n. 13
0
def solve_problem(input):
    police = input['police']

    actions_police = []
    i = 1
    for p in range(police):
        actions_police.append('P' + str(i))
        i += 1

    medics = input['medics']
    actions_medics = []
    j = 1
    for m in range(medics):
        actions_medics.append('M' + str(j))
        j += 1

    states = {}
    for turn in range(len(input['observations'])):
        states[turn] = input['observations'][turn]

    KB = []

    r = len(states[0])
    c = len(states[0][0])
    state_p = ['U', 'H', 'S', '?', 'Q', 'I']
    max_turns = len(input['observations'])
    p = {}
    inital_state = []
    max_index = 1
    dict_p_to_int = {}
    all_p_a = {}

    for turn in range(max_turns):
        p_0 = []
        for i in range(r):
            for j in range(c):
                inital_state.append(
                    tuple([tuple([i, j]), turn, states[turn][i][j]]))
                for state in state_p:
                    p_0.append(tuple([tuple([i, j]), turn, state]))
                    dict_p_to_int[tuple([tuple([i, j]), turn,
                                         state])] = max_index
                    all_p_a[tuple([tuple([i, j]), turn, state])] = max_index
                    if tuple([tuple([i, j]), turn, state]) in inital_state:
                        KB.append([max_index])
                    else:
                        if tuple([tuple([i, j]), turn,
                                  '?']) not in inital_state:
                            KB.append([-1 * max_index])
                    max_index += 1
        p[turn] = p_0

    all_actions = {}
    # add actions to dict_p_to_int
    for turn in range(max_turns):
        for i in range(r):
            for j in range(c):
                for ac1 in actions_police:
                    max_index = max_index + 1
                    dict_p_to_int[tuple([tuple([i, j]), turn,
                                         ac1])] = max_index
                    all_p_a[tuple([tuple([i, j]), turn, ac1])] = max_index
                    all_actions[tuple([tuple([i, j]), turn, ac1])] = max_index

                for ac2 in actions_medics:
                    max_index = max_index + 1
                    dict_p_to_int[tuple([tuple([i, j]), turn,
                                         ac2])] = max_index
                    all_p_a[tuple([tuple([i, j]), turn, ac2])] = max_index
                    all_actions[tuple([tuple([i, j]), turn, ac2])] = max_index

    # S -> ~H,~I,~Q,~U
    for turn in range(max_turns):
        for i in range(r):
            for j in range(c):
                x1 = dict_p_to_int[tuple([tuple([i, j]), turn, 'Q'])]
                x2 = dict_p_to_int[tuple([tuple([i, j]), turn, 'H'])]
                x3 = dict_p_to_int[tuple([tuple([i, j]), turn, 'I'])]
                x4 = dict_p_to_int[tuple([tuple([i, j]), turn, 'S'])]
                x5 = dict_p_to_int[tuple([tuple([i, j]), turn, 'U'])]
                x6 = dict_p_to_int[tuple([tuple([i, j]), turn, '?'])]

                for s in state_p:
                    if s == 'Q':
                        KB.extend([[-1 * x1, -1 * x2], [-1 * x1, -1 * x3],
                                   [-1 * x1, -1 * x4], [-1 * x1, -1 * x5]])
                    if s == 'H':
                        KB.extend([[-1 * x2, -1 * x1], [-1 * x2, -1 * x3],
                                   [-1 * x2, -1 * x4], [-1 * x2, -1 * x5]])
                    if s == 'I':
                        KB.extend([[-1 * x3, -1 * x1], [-1 * x3, -1 * x2],
                                   [-1 * x3, -1 * x4], [-1 * x3, -1 * x5]])
                    if s == 'S':
                        KB.extend([[-1 * x4, -1 * x1], [-1 * x4, -1 * x2],
                                   [-1 * x4, -1 * x3], [-1 * x4, -1 * x5]])
                    if s == 'U':
                        KB.extend([[-1 * x5, -1 * x1], [-1 * x5, -1 * x2],
                                   [-1 * x5, -1 * x3], [-1 * x5, -1 * x4]])
                    if s == '?':
                        KB.append([-1 * x6, x1, x2, x3, x4, x5])
# KB.append(["S -> ~H,~I,~Q,~U Done"])

    goals = input['queries']

    add_effect_all_actions = {}
    for action in actions_police:
        for turn in range(max_turns):
            for i in range(r):
                for j in range(c):

                    add = []
                    if turn + 1 < max_turns:
                        Q1 = dict_p_to_int[tuple(
                            [tuple([i, j]), turn + 1, 'Q'])]
                        add.append(Q1)
                    elif turn + 2 <= max_turns:
                        Q2 = dict_p_to_int[tuple(
                            [tuple([i, j]), turn + 2, 'Q'])]
                        add.append(Q2)
                    elif turn + 3 <= max_turns:
                        H3 = dict_p_to_int[tuple(
                            [tuple([i, j]), turn + 3, 'H'])]
                        add.append(H3)
                    add_effect_all_actions[max_index] = add
                    # {~a_t,p_t}
                    a_t = dict_p_to_int[tuple([tuple([i, j]), turn, action])]
                    p_t = dict_p_to_int[tuple([tuple([i, j]), turn, 'S'])]
                    KB.append([-1 * a_t, p_t])
    #KB.append(["-1 * a_t, p_t police Done"])

    for action in actions_medics:
        for turn in range(max_turns):
            for i in range(r):
                for j in range(c):

                    if turn + 1 <= max_turns:
                        add_effect_all_actions[max_index] = [
                            tuple([tuple([i, j]), turn + 1, 'I'])
                        ]
                    # {~a_t,p_t}
                    a_t = dict_p_to_int[tuple([tuple([i, j]), turn, action])]
                    p_t = dict_p_to_int[tuple([tuple([i, j]), turn, 'H'])]
                    KB.append([-1 * a_t, p_t])
    #KB.append(["-1 * a_t, p_t med Done"])

    # don't apply interfering actions at the same time
    # {~a_t,a_t'}

# apply one action once each turn
    for ac in actions_medics:
        for turn in range(max_turns):
            for i in range(r):
                for j in range(c):
                    x1 = dict_p_to_int[tuple([tuple([i, j]), turn, ac])]
                    for i_1 in range(r):
                        for j_1 in range(c):
                            if i != i_1 and j != j_1:
                                x2 = dict_p_to_int[tuple(
                                    [tuple([i_1, j_1]), turn, ac])]
                                KB.append([-1 * x1, -1 * x2])

    for ac in actions_police:
        for turn in range(max_turns):
            for i in range(r):
                for j in range(c):
                    x1 = dict_p_to_int[tuple([tuple([i, j]), turn, ac])]
                    for i_1 in range(r):
                        for j_1 in range(c):
                            if i != i_1 and j != j_1:
                                x2 = dict_p_to_int[tuple(
                                    [tuple([i_1, j_1]), turn, ac])]
                                KB.append([-1 * x1, -1 * x2])

# apply action if can

    for ac in actions_medics:
        for turn in range(max_turns):
            l1 = []
            for i in range(r):
                for j in range(c):
                    l1.append(dict_p_to_int[tuple([tuple([i, j]), turn, ac])])
            KB.append(l1)

    for ac in actions_police:
        for turn in range(max_turns):
            l1 = []
            for i in range(r):
                for j in range(c):
                    l1.append(dict_p_to_int[tuple([tuple([i, j]), turn, ac])])
            KB.append(l1)

    # fact implies disjunction of its achevers
    # {~p_t} or {a_(t-1)|p in add(a)}
    if len(all_actions) != 0:
        for p, v1 in dict_p_to_int.items():
            l = [-1 * v1]
            for action, v2 in add_effect_all_actions.items():
                if v1 in v2:
                    l.append(action)
            if len(l) > 1:
                KB.append(l)

    for turn in range(1, max_turns):
        for key, v in dict_p_to_int.items():
            ######### U ###########
            if turn != key[1]:
                continue
            if key[2] == 'U':
                KB.append([
                    -1 * v, dict_p_to_int[tuple([key[0], key[1] - 1, key[2]])]
                ])
            ######### I ###########
            if key[2] == 'I':
                l2 = [v * -1]
                if len(actions_medics) > 0:
                    if turn + 1 < max_turns:
                        KB.append([
                            -1 * v,
                            dict_p_to_int[tuple([key[0], key[1] + 1, key[2]])]
                        ])

                    for i in range(turn):
                        for ac in actions_medics:
                            l2.append(dict_p_to_int[tuple([key[0], i, ac])])
                KB.append(l2)

            ######### ? ###########
            if key[2] == '?':
                x1 = v
                x2 = dict_p_to_int[tuple([key[0], key[1], 'H'])]
                x3 = dict_p_to_int[tuple([key[0], key[1], 'U'])]
                x4 = dict_p_to_int[tuple([key[0], key[1], 'S'])]
                x5 = dict_p_to_int[tuple([key[0], key[1], 'I'])]
                x6 = dict_p_to_int[tuple([key[0], key[1], 'Q'])]
                KB.append([-1 * x1, x2, x3, x4, x5, x6])

            ######### H ###########
            if key[2] == 'H':
                x1 = v
                x2 = dict_p_to_int[tuple([key[0], key[1] - 1,
                                          key[2]])]  # H in i-1
                N = neighbors(key[0][0], key[0][1], r, c)

                ############# turn < 3 ############

                if turn < 3:
                    if len(N) == 1:
                        x3 = dict_p_to_int[tuple(
                            [N[0], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor1 was S
                        # (x2 | ~x1) & (~x1 | ~x3)
                        KB.extend([[x2, -1 * x1], [-1 * x1,
                                                   -1 * x3]])  # x1-> x2 & ~x3
                    elif len(N) == 2:
                        x3 = dict_p_to_int[tuple(
                            [N[0], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor1 was S
                        x4 = dict_p_to_int[tuple(
                            [N[1], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor2 was S
                        # (x2 | ~x1) & (~x1 | ~x3) & (~x1 | ~x4)
                        KB.extend([[x2, -1 * x1], [-1 * x1, -1 * x3],
                                   [-1 * x1, -1 * x4]])  # x1-> x2 & ~x3 & ~x4
                    elif len(N) == 3:
                        x3 = dict_p_to_int[tuple(
                            [N[0], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor1 was S
                        x4 = dict_p_to_int[tuple(
                            [N[1], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor2 was S
                        x5 = dict_p_to_int[tuple(
                            [N[2], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor2 was S
                        # (x2 | ~x1) & (~x1 | ~x3) & (~x1 | ~x4) & (~x1 | ~x5)
                        KB.extend([[x2, -1 * x1], [-1 * x1, -1 * x3],
                                   [-1 * x1, -1 * x4],
                                   [-1 * x1,
                                    -1 * x5]])  # x1-> x2 & ~x3 & ~x4 & ~x5
                    else:
                        x3 = dict_p_to_int[tuple(
                            [N[0], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor1 was S
                        x4 = dict_p_to_int[tuple(
                            [N[1], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor2 was S
                        x5 = dict_p_to_int[tuple(
                            [N[2], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor3 was S
                        x6 = dict_p_to_int[tuple(
                            [N[3], key[1] - 1,
                             'S'])]  # in i-1 :i was  H , my neighbor4 was S
                        # (x2 | ~x1) & (~x1 | ~x3) & (~x1 | ~x4) & (~x1 | ~x5) & (~x1 | ~x6)
                        KB.extend([[x2, -1 * x1], [-1 * x1, -1 * x3],
                                   [-1 * x1, -1 * x4], [-1 * x1, -1 * x5],
                                   [-1 * x1,
                                    -1 * x6]])  # x1-> x2 & ~x3 & ~x4 & ~x5

                ########## turn >= 3 ##########

                else:
                    # i was sick for 3 turns
                    x7 = dict_p_to_int[tuple([key[0], key[1] - 1, 'S'])]
                    x8 = dict_p_to_int[tuple([key[0], key[1] - 2, 'S'])]
                    x9 = dict_p_to_int[tuple([key[0], key[1] - 3, 'S'])]

                    if police > 0:
                        # i was in quarantine for 2 turns
                        x10 = dict_p_to_int[tuple([key[0], key[1] - 1, 'Q'])]
                        x11 = dict_p_to_int[tuple([key[0], key[1] - 2, 'Q'])]

                        if len(N) == 1:
                            x3 = dict_p_to_int[tuple([
                                N[0], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor1 was S
                            # x1-> (x2 & ~x3) or (x7 & x8 & x9) or (x10 & x11)
                            KB.extend([[x10, x2, x7, -1 * x1],
                                       [x10, x2, x8, -1 * x1],
                                       [x10, x2, x9, -1 * x1],
                                       [x11, x2, x7, -1 * x1],
                                       [x11, x2, x8, ~x1],
                                       [x11, x2, x9, -1 * x1],
                                       [x10, x7, -1 * x1, -1 * x3],
                                       [x10, x8, -1 * x1, -1 * x3],
                                       [x10, x9, -1 * x1, -1 * x3],
                                       [x11, x7, -1 * x1, -1 * x3],
                                       [x11, x8, ~x1, -1 * x3],
                                       [x11, x9, -1 * x1, -1 * x3]])
                        elif len(N) == 2:
                            x3 = dict_p_to_int[tuple([
                                N[0], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor1 was S
                            x4 = dict_p_to_int[tuple([
                                N[1], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor2 was S
                            # x1-> (x2 & ~x3 & ~x4 )or (x7 & x8 & x9) or (x10 & x11)

                            KB.extend([[x10, x2, x7, -1 * x1],
                                       [x10, x2, x8, -1 * x1],
                                       [x10, x2, x9, -1 * x1],
                                       [x11, x2, x7, -1 * x1],
                                       [x11, x2, x8, -1 * x1],
                                       [x11, x2, x9, -1 * x1],
                                       [x10, x7, -1 * x1, -1 * x3],
                                       [x10, x7, -1 * x1, -1 * x4],
                                       [x10, x8, -1 * x1, -1 * x3],
                                       [x10, x8, -1 * x1, -1 * x4],
                                       [x10, x9, -1 * x1, -1 * x3],
                                       [x10, x9, -1 * x1, -1 * x4],
                                       [x11, x7, -1 * x1, -1 * x3],
                                       [x11, x7, -1 * x1, -1 * x4],
                                       [x11, x8, -1 * x1, -1 * x3],
                                       [x11, x8, -1 * x1, -1 * x4],
                                       [x11, x9, -1 * x1, -1 * x3],
                                       [x11, x9, ~x1, -1 * x4]])
                        elif len(N) == 3:
                            x3 = dict_p_to_int[tuple([
                                N[0], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor1 was S
                            x4 = dict_p_to_int[tuple([
                                N[1], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor2 was S
                            x5 = dict_p_to_int[tuple([
                                N[2], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor2 was S
                            # x1-> (x2 & ~x3 & ~x4 & ~x5 )or (x7 & x8 & x9) or (x10 & x11)

                            KB.extend([[x10, x2, x7, -1 * x1],
                                       [x10, x2, x8, -1 * x1],
                                       [x10, x2, x9, -1 * x1],
                                       [x11, x2, x7, -1 * x1],
                                       [x11, x2, x8, -1 * x1],
                                       [x11, x2, x9, -1 * x1],
                                       [x10, x7, -1 * x1, ~x3],
                                       [x10, x7, -1 * x1, -1 * x4],
                                       [x10, x7, -1 * x1, -1 * x5],
                                       [x10, x8, -1 * x1, -1 * x3],
                                       [x10, x8, -1 * x1, -1 * x4],
                                       [x10, x8, -1 * x1, -1 * x5],
                                       [x10, x9, -1 * x1, -1 * x3],
                                       [x10, x9, -1 * x1, -1 * x4],
                                       [x10, x9, -1 * x1, -1 * x5],
                                       [x11, x7, -1 * x1, -1 * x3],
                                       [x11, x7, -1 * x1, -1 * x4],
                                       [x11, x7, -1 * x1, -1 * x5],
                                       [x11, x8, -1 * x1, -1 * x3],
                                       [x11, x8, -1 * x1, -1 * x4],
                                       [x11, x8, -1 * x1, -1 * x5],
                                       [x11, x9, -1 * x1, -1 * x3],
                                       [x11, x9, -1 * x1, -1 * x4],
                                       [x11, x9, -1 * x1, -1 * x5]])
                        else:
                            # x1-> (x2 & ~x3 & ~x4 & ~x5 & ~x6 )or (x7 & x8 & x9) or (x10 & x11)
                            x3 = dict_p_to_int[tuple([
                                N[0], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor1 was S
                            x4 = dict_p_to_int[tuple([
                                N[1], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor2 was S
                            x5 = dict_p_to_int[tuple([
                                N[2], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor3 was S
                            x6 = dict_p_to_int[tuple([
                                N[3], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor4 was S

                            KB.extend([[x10, x2, x7, -1 * x1],
                                       [x10, x2, x8, -1 * x1],
                                       [x10, x2, x9, -1 * x1],
                                       [x11, x2, x7, -1 * x1],
                                       [x11, x2, x8, -1 * x1],
                                       [x11, x2, x9, -1 * x1],
                                       [x10, x7, -1 * x1, -1 * x3],
                                       [x10, x7, -1 * x1, -1 * x4],
                                       [x10, x7, -1 * x1, -1 * x5],
                                       [x10, x7, ~x1, -1 * x6],
                                       [x10, x8, -1 * x1, -1 * x3],
                                       [x10, x8, -1 * x1, -1 * x4],
                                       [x10, x8, -1 * x1, -1 * x5],
                                       [x10, x8, -1 * x1, -1 * x6],
                                       [x10, x9, -1 * x1, -1 * x3],
                                       [x10, x9, -1 * x1, -1 * x4],
                                       [x10, x9, -1 * x1, -1 * x5],
                                       [x10, x9, -1 * x1, -1 * x6],
                                       [x11, x7, -1 * x1, -1 * x3],
                                       [x11, x7, -1 * x1, -1 * x4],
                                       [x11, x7, -1 * x1, -1 * x5],
                                       [x11, x7, -1 * x1, -1 * x6],
                                       [x11, x8, -1 * x1, -1 * x3],
                                       [x11, x8, -1 * x1, -1 * x4],
                                       [x11, x8, -1 * x1, -1 * x5],
                                       [x11, x8, -1 * x1, -1 * x6],
                                       [x11, x9, -1 * x1, -1 * x3],
                                       [x11, x9, -1 * x1, -1 * x4],
                                       [x11, x9, -1 * x1, -1 * x5],
                                       [x11, x9, -1 * x1, -1 * x6]])
                    else:
                        if len(N) == 1:
                            x3 = dict_p_to_int[tuple([
                                N[0], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor1 was S
                            # x1-> (x2 & ~x3) or (x7 & x8 & x9)
                            KB.extend([[x2, x7, -1 * x1], [x2, x8, -1 * x1],
                                       [x2, x9, -1 * x1], [x7, -1 * x1, ~x3],
                                       [x8, -1 * x1, -1 * x3],
                                       [x9, -1 * x1, -1 * x3]])
                        elif len(N) == 2:
                            x3 = dict_p_to_int[tuple([
                                N[0], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor1 was S
                            x4 = dict_p_to_int[tuple([
                                N[1], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor2 was S
                            # x1-> (x2 & ~x3 & ~x4 )or (x7 & x8 & x9)

                            KB.extend([[x2, x7, -1 * x1], [x2, x8, -1 * x1],
                                       [x2, x9, -1 * x1],
                                       [x7, -1 * x1, -1 * x3],
                                       [x7, -1 * x1, -1 * x4],
                                       [x8, -1 * x1, -1 * x3],
                                       [x8, -1 * x1, -1 * x4],
                                       [x9, -1 * x1, -1 * x3],
                                       [x9, -1 * x1, -1 * x4]])

                        elif len(N) == 3:
                            x3 = dict_p_to_int[tuple([
                                N[0], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor1 was S
                            x4 = dict_p_to_int[tuple([
                                N[1], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor2 was S
                            x5 = dict_p_to_int[tuple([
                                N[2], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor2 was S
                            # x1-> (x2 & ~x3 & ~x4 & ~x5 )or (x7 & x8 & x9)
                            KB.extend([[x2, x7, -1 * x1], [x2, x8, -1 * x1],
                                       [x2, x9, -1 * x1],
                                       [x7, -1 * x1, -1 * x3],
                                       [x7, -1 * x1, -1 * x4],
                                       [x7, -1 * x1, -1 * x5],
                                       [x8, -1 * x1, -1 * x3],
                                       [x8, -1 * x1, -1 * x4],
                                       [x8, -1 * x1, -1 * x5],
                                       [x9, -1 * x1, -1 * x3],
                                       [x9, -1 * x1, -1 * x4],
                                       [x9, -1 * x1, -1 * x5]])
                        else:
                            # x1-> (x2 & ~x3 & ~x4 & ~x5 & ~x6 )or (x7 & x8 & x9)
                            x3 = dict_p_to_int[tuple([
                                N[0], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor1 was S
                            x4 = dict_p_to_int[tuple([
                                N[1], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor2 was S
                            x5 = dict_p_to_int[tuple([
                                N[2], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor3 was S
                            x6 = dict_p_to_int[tuple([
                                N[3], key[1] - 1, 'S'
                            ])]  # in i-1 :i was  H , my neighbor4 was S

                            KB.extend([[x2, x7, -1 * x1], [x2, x8, -1 * x1],
                                       [x2, x9, -1 * x1],
                                       [x7, -1 * x1, -1 * x3],
                                       [x7, -1 * x1, -1 * x4],
                                       [x7, -1 * x1, -1 * x5],
                                       [x7, -1 * x1, -1 * x6],
                                       [x8, -1 * x1, -1 * x3],
                                       [x8, -1 * x1, -1 * x4],
                                       [x8, -1 * x1, -1 * x5],
                                       [x8, -1 * x1, -1 * x6],
                                       [x9, -1 * x1, -1 * x3],
                                       [x9, -1 * x1, -1 * x4],
                                       [x9, -1 * x1, -1 * x5],
                                       [x9, -1 * x1, -1 * x6]])
                #KB.append(["H Done"])

            ######### S ###########
            if key[2] == 'S':
                x1 = v
                x2 = dict_p_to_int[tuple([key[0], key[1] - 1, key[2]
                                          ])]  # i was S in the last turn (i-1)
                x3 = dict_p_to_int[tuple([key[0], key[1] - 1, 'H'
                                          ])]  # i was H in the last turn (i-1)
                N = neighbors(key[0][0], key[0][1], r, c)

                ###### turn < 3 #####

                if len(N) == 1:
                    # x1 -> (x2) or (x3 and x4)
                    x4 = dict_p_to_int[tuple(
                        [N[0], key[1] - 1,
                         'S'])]  # in i-1 :i was  H , my neighbor1 was S
                    KB.extend([[x2, x3, -1 * x1], [x2, x4, -1 * x1]])

                elif (len(N) == 2):
                    # x1 -> (x2) or ((x3 and x4) or (x3 and x5))
                    x4 = dict_p_to_int[tuple(
                        [N[0], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor1 was S
                    x5 = dict_p_to_int[tuple(
                        [N[1], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor2 was S
                    KB.extend([[x2, x3, -1 * x1], [x2, x3, x4, -1 * x1],
                               [x2, x3, x5, -1 * x1], [x2, x4, x5, -1 * x1]])

                elif (len(N) == 3):
                    # x1 -> (x2) or ((x3 and x4) or (x3 and x5) or (x3 and x6)
                    x4 = dict_p_to_int[tuple(
                        [N[0], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor1 was S
                    x5 = dict_p_to_int[tuple(
                        [N[1], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor2 was S
                    x6 = dict_p_to_int[tuple(
                        [N[2], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor3 was S
                    KB.extend([[x2, x3, -1 * x1], [x2, x3, x4, -1 * x1],
                               [x2, x3, x5, -1 * x1], [x2, x3, x6, -1 * x1],
                               [x2, x3, x4, x5, -1 * x1],
                               [x2, x3, x4, x6, -1 * x1],
                               [x2, x3, x5, x6, -1 * x1],
                               [x2, x4, x5, x6, -1 * x1]])

                else:
                    # x1 -> (x2) or ((x3 and x4) or (x3 and x4) or (x3 and x5) or (x3 and x6)
                    x4 = dict_p_to_int[tuple(
                        [N[0], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor1 was S
                    x5 = dict_p_to_int[tuple(
                        [N[1], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor2 was S
                    x6 = dict_p_to_int[tuple(
                        [N[2], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor3 was S
                    x7 = dict_p_to_int[tuple(
                        [N[3], key[1] - 1,
                         key[2]])]  # in i-1 :i was  H , my neighbor4 was S
                    KB.extend([[x2, x3, -1 * x1], [x2, x3, x4, -1 * x1],
                               [x2, x3, x5, -1 * x1], [x2, x3, x6, -1 * x1],
                               [x2, x3, x7, -1 * x1],
                               [x2, x3, x4, x5, -1 * x1],
                               [x2, x3, x4, x6, -1 * x1],
                               [x2, x3, x4, x7, -1 * x1],
                               [x2, x3, x5, x6, -1 * x1],
                               [x2, x3, x5, x7, -1 * x1],
                               [x2, x3, x6, x7, -1 * x1],
                               [x2, x3, x4, x5, x6, -1 * x1],
                               [x2, x3, x4, x5, x7, -1 * x1],
                               [x2, x3, x4, x6, x7, -1 * x1],
                               [x2, x3, x5, x6, x7, -1 * x1],
                               [x2, x4, x5, x6, x7, -1 * x1]])

                if turn > 2 and turn + 1 < max_turns:
                    x1 = v
                    x2 = dict_p_to_int[tuple([key[0], key[1] - 1, key[2]])]
                    x3 = dict_p_to_int[tuple([key[0], key[1] - 2, key[2]])]
                    x4 = dict_p_to_int[tuple([key[0], key[1] + 1, "H"])]
                    KB.append([x4, -1 * x1, -1 * x2, -1 * x3])

    ######### Q ###########
            if key[2] == 'Q':
                l2 = [v * -1]
                if len(actions_police) > 0:
                    for action in actions_police:
                        l2.append(dict_p_to_int[tuple(
                            [key[0], key[1] - 1, action])])
                        if turn > 2:
                            l2.append(dict_p_to_int[tuple(
                                [key[0], key[1] - 2, action])])
                KB.append(l2)
    result = {}
    with Minisat22(bootstrap_with=KB) as m:
        for q in goals:
            r1 = m.solve(assumptions=[dict_p_to_int[q]])
            r2 = m.solve(assumptions=[-1 * dict_p_to_int[q]])
            if r1 == False:
                result[q] = 'F'
            elif r1 == r2:
                result[q] = '?'
            else:
                result[q] = 'T'
    return result
Esempio n. 14
0
def hads_to_graphs(all_columns=True, transpose=True):

    if DEBUGGING:
        start_time = datetime.datetime.now()

    translate = {
        '0': [-1, -1, -1, -1],
        '1': [-1, -1, -1, 1],
        '2': [-1, -1, 1, -1],
        '3': [-1, -1, 1, 1],
        '4': [-1, 1, -1, -1],
        '5': [-1, 1, -1, 1],
        '6': [-1, 1, 1, -1],
        '7': [-1, 1, 1, 1],
        '8': [1, -1, -1, -1],
        '9': [1, -1, -1, 1],
        'A': [1, -1, 1, -1],
        'B': [1, -1, 1, 1],
        'C': [1, 1, -1, -1],
        'D': [1, 1, -1, 1],
        'E': [1, 1, 1, -1],
        'F': [1, 1, 1, 1]
    }

    #tracks the number of graphs and hadamard matrices
    hctr = 0
    gctr = 0

    mults_to_clauses = dict()

    emap = dict()
    ectr = 0
    for a in range(K):
        for b in range(a + 1, K):
            ectr += 1
            emap[ectr] = (a, b)
            emap[(a, b)] = ectr

    re_emap = dict()
    ectr = 0
    for b in range(K):
        for a in range(b):
            ectr += 1
            #re_emap[(a,b)] = ectr
            re_emap[emap[(a, b)]] = ectr
            print('relabeled index of', (a, b),
                  'from',
                  emap[(a, b)],
                  'to',
                  ectr,
                  file=sys.stderr)

    #return

    if all_columns:
        max_col = K - 1

    else:
        max_col = 0

    for curr_line in fileinput.input():
        myh = []
        #print('curr line is:')
        #print(curr_line)
        #print('just did it')
        #print('currline[:-1] is:')
        #print(curr_line[:-1])
        #print('just did it')
        #print()
        if DEBUGGING:
            print('the entries of curr line are:', file=sys.stderr)
            for s in curr_line:
                print(s)

        for s in curr_line[:-1]:
            if DEBUGGING:
                print(s, file=sys.stderr)
                print(translate[s], file=sys.stderr)
            myh.extend(translate[s])
        myh = matrix([myh[i * K:(i + 1) * K] for i in range(K)])

        #for line in chunk.splitlines():
        #    myh = []
        #    for s in line:
        #        myh.extend(translate[s])
        #myh = matrix([myh[i*K:(i+1)*K] for i in range(K)]])

        if VERBOSE:
            print('trying matrix', hctr, '...', file=sys.stderr)

        for col in range(max_col + 1):
            hh = swap_cols(myh, 0, col)
            dd = diagonal_matrix([hh[j, 0] for j in range(K)])

            hh = dd * hh

            dd = diagonal_matrix([hh[0, j] for j in range(K)])
            hh = hh * dd

            if transpose:
                newhh = []
                for i in range(K):
                    newhh.append([hh[j, i] for j in range(K)])
                hh = matrix(newhh)

            nclauses = 0
            nvars = K * (K - 1) / 2

            if SOLVER_NUM == 0:
                g = Glucose3()
            if SOLVER_NUM == 1:
                g = Glucose4()
            if SOLVER_NUM == 2:
                g = Lingeling()
            if SOLVER_NUM == 3:
                g = MapleChrono()
            if SOLVER_NUM == 4:
                g = MapleCM()
            if SOLVER_NUM == 5:
                g = Maplesat()
            if SOLVER_NUM == 6:
                g = Minicard()
            if SOLVER_NUM == 7:
                g = Minisat22()
            if SOLVER_NUM == 8:
                g = MinisatGH()

            matchings = dict()

            ectr = 0

            for b in range(K - 1):
                ectr += 1
                my_row = [0 for i in range(K - 1)]
                my_row[b] = K
                my_row = tuple(my_row)
                matchings[my_row] = [(ectr, 0, b)]

            for a in range(1, K):
                for b in range(a + 1, K):
                    if DEBUGGING:
                        print('trying', (a, b), file=sys.stderr)
                    ectr += 1
                    hab = tuple([hh[a, j] * hh[b, j] for j in range(K)])
                    my_row = []
                    for j in range(1, K):
                        dot = 0
                        for k in range(K):
                            dot += hab[k] * hh[j, k]
                        my_row.append(dot)

                    my_row = tuple(my_row)

                    if my_row in matchings:
                        matchings[my_row].append((ectr, a, b))
                        old_ectr = matchings[my_row][0][0]
                        if DEBUGGING:
                            print('the old ectr,ectr=',
                                  old_ectr,
                                  ectr,
                                  file=sys.stderr)
                        g.add_clause((re_emap[old_ectr], -re_emap[ectr]))
                        g.add_clause((-re_emap[old_ectr], re_emap[ectr]))
                        nclauses += 2

                    else:
                        matchings[my_row] = [(ectr, a, b)]

                        coes_to_inds = dict()
                        mults = []

                        for i in range(K - 1):
                            coe = my_row[i]
                            if coe in coes_to_inds:
                                coes_to_inds[coe].append(i)
                            else:
                                coes_to_inds[coe] = [i]

                        mults = [(coe, len(coes_to_inds[coe]))
                                 for coe in coes_to_inds if coe]
                        mults.sort()
                        mults = tuple(mults)

                        if mults in mults_to_clauses:
                            old_ectr, num_new_vars, old_coes_to_inds, old_clauses = mults_to_clauses[
                                mults]

                            #must relabel the old indices to match the new ones
                            #for each coefficient c
                            relab = dict()

                            for coe in old_coes_to_inds:
                                coe_ctr = 0
                                for old_index in old_coes_to_inds[coe]:
                                    relab[1 + old_index] = re_emap[
                                        1 + coes_to_inds[coe][coe_ctr]]
                                    relab[-1 - old_index] = -re_emap[
                                        1 + coes_to_inds[coe][coe_ctr]]
                                    coe_ctr += 1

                            relab[old_ectr] = re_emap[ectr]
                            relab[-old_ectr] = -re_emap[ectr]

                            for i in range(1, 1 + num_new_vars):
                                relab[old_ectr + i] = i + nvars
                                relab[-old_ectr - i] = -i - nvars

                            for curr_clause in old_clauses:
                                g.add_clause([relab[k] for k in curr_clause])

                            nclauses += len(old_clauses)
                            nvars += num_new_vars

                        else:
                            if DEBUGGING:
                                print('dealing with',
                                      mults,
                                      'for the first time...',
                                      file=sys.stderr)
                            cnf = PBEnc.equals(lits=range(1, K) + [ectr],
                                               weights=list(my_row) + [-K],
                                               bound=0,
                                               encoding=4)
                            curr_clauses, maxvar = simplify_clause_list(
                                cnf.clauses, ectr + 1)

                            num_new_vars = maxvar - ectr

                            if DEBUGGING:
                                print("", file=sys.stderr)
                                print("", file=sys.stderr)
                                print('adding new clauses; there are',
                                      nvars,
                                      'vars',
                                      file=sys.stderr)

                            for curr_clause in curr_clauses:
                                if DEBUGGING:
                                    print('relabeling clause',
                                          c,
                                          'with ectr=',
                                          ectr,
                                          'and',
                                          nvars,
                                          'vars',
                                          file=sys.stderr)
                                new_clause = []
                                for k in curr_clause:
                                    if abs(k) <= ectr:
                                        if k > 0:
                                            new_clause.append(re_emap[k])
                                        else:
                                            new_clause.append(-re_emap[-k])
                                    else:
                                        if k > 0:
                                            if DEBUGGING:
                                                print(k,
                                                      'is the',
                                                      k - ectr,
                                                      'th dummy...',
                                                      'shift it up by',
                                                      nvars,
                                                      file=sys.stderr)
                                            new_clause.append(k - ectr + nvars)
                                        else:
                                            new_clause.append(k + ectr - nvars)
                                            if DEBUGGING:
                                                print(k,
                                                      'is the',
                                                      k + ectr,
                                                      'th dummy...',
                                                      'shift it down by',
                                                      nvars,
                                                      file=sys.stderr)
                                if DEBUGGING:
                                    print('    adding',
                                          new_clause,
                                          file=sys.stderr)
                                g.add_clause(new_clause)

                            nvars += num_new_vars
                            nclauses += len(curr_clauses)

                            mults_to_clauses[mults] = (ectr, num_new_vars,
                                                       coes_to_inds,
                                                       curr_clauses)

                            if DEBUGGING:
                                print('now there are', (nvars, nclauses),
                                      'vars,clauses',
                                      file=sys.stderr)

            sol_ctr = 0

            if VERBOSE:
                print('there are',
                      nvars,
                      'variables and',
                      nclauses,
                      'clauses',
                      file=sys.stderr)
                print('trying to find all solutions!', file=sys.stderr)

            if True:  #nvars >= 2000:
                while g.solve():
                    new_sol = g.get_model()
                    sol_ctr += 1

                    if sol_ctr % 1000 == 0:
                        print('   ',
                              sol_ctr,
                              'found so far...',
                              file=sys.stderr)

                    gctr += 1
                    #nx.write_graph6(nx.Graph([emap[k] for k in new_sol[:K*(K-1)/2] if k > 0]), sys.stdout, nodes = range(K))
                    #print( str([emap[k] for k in new_sol[:K*(K-1)/2] if k > 0]), file = sys.stdout )
                    g.add_clause(
                        [-new_sol[1 + j * (j + 1) / 2] for j in range(K - 1)])
                    #print([k for k in new_sol[:K*(K-1)/2] if k > 0], file = sys.stderr)
                    #print('which is really:', file = sys.stderr)
                    #print([re_emap[emap[k]] for k in new_sol[:K*(K-1)/2] if k > 0], file = sys.stderr)
                    #print('got written as\n', file = sys.stderr)
                    print(sol_to_g6(new_sol[:K * (K - 1) / 2]),
                          file=sys.stdout)
                    #g.add_clause( [-new_sol[j] for j in range(K-1)] )

                if VERBOSE:
                    print(sol_ctr, 'solutions found!', file=sys.stderr)
                    if DEBUGGING:
                        end_time = datetime.datetime.now()
                        elapsed_time = end_time - start_time
                        print('total time elapsed:',
                              elapsed_time.seconds,
                              ":",
                              elapsed_time.microseconds,
                              'matrices solved:',
                              hctr,
                              file=sys.stderr)

            else:
                if VERBOSE:
                    print('too hard for now!', file=sys.stderr)

            hctr += 1
    return
Esempio n. 15
0
def qbf(v_forall, F):
    ''' Implementation of the CEGAR 2-QBF algorithm  forall x, exists y, F
    For efficiency reason, x and y would better be sets
    '''
    syn_man = []
    ver_man = F

    max_id = 1 + max( [ max( [abs(x) for x in cnf] ) for cnf in F ]  )

    universal_clauses = []
    for dnf in F:
        for x in dnf:
            if abs(x) in v_forall:
                universal_clauses.append(dnf)
                break
    
    # print("universal clauses:", universal_clauses)

    gas = 16
    i = 0
    while i < gas:
        sol_x = None
        sol_y = None
        
        # find solution for synMan
        if syn_man == []:
            sol_x = v_forall
        else:
            with Minisat22(bootstrap_with= syn_man) as m:
                if m.solve():
                    sol_x = m.get_model()
            if sol_x is None:
                return True

        sol_x = list( filter(lambda x: abs(x) in v_forall,  sol_x) )
        # print("sol_x", sol_x)

        # find solution for VerMan
        with Minisat22(bootstrap_with= ver_man) as m:
            if m.solve(assumptions=sol_x):
                sol_y = m.get_model()
        if sol_y is None:
            return False

        # print("sol_y", sol_y)

        sol_y = set( filter(lambda x: abs(x) not in v_forall,  sol_y) )

        # update synMan
        # 1. fill in values in sol_y and reduce universal_clauses
        cl = fill_in_simplify(universal_clauses, sol_y)

        # print("cl:", cl)

        # 2. tseitin transform  "not cl"                
        res, max_id = negate_clauses(cl, max_id)

        # print("res:", res)
        if res == []:
            # no more cases for x need to be considered, done
            return True

        for dnf in res:
            syn_man.append(dnf)

        # print("syn_man:", syn_man)
        syn_man = deduplicate(syn_man)
        # print("syn_man:", syn_man)
        i += 1

#    print("run out of gas!!")
    return True    
Esempio n. 16
0
from pysat.solvers import Minisat22
from pysat.formula import CNF
import math

################ using minisat to solve n-queens #############
#file1= open("queen2sat.cnf","a");
formula = CNF(from_file='queen2sat.cnf')
#print(formula.clauses)
m = Minisat22(bootstrap_with=formula.clauses, use_timer=True)
#m.solve()
control = False
while (m.solve() == True):
    s = (m.get_model())
    int_list = [i * -1 for i in s]
    #print(s)
    #print('{0:.2f}s'.format(s.time()))
    print('{0:.5f}s'.format(m.time_accum()))
    with open('require_input', 'r') as fr:
        read_data = fr.read()
    rd = read_data.split(' ')
    #print(read_data)
    rd = [int(i) for i in rd]
    #print(rd)
    rd_set = set(rd)
    ans = set(s)
    result = rd_set.intersection(ans)
    #print(result)
    if rd[0] == 0:
        print("No given queen's position")
        break
    elif len(result) == len(rd):
Esempio n. 17
0
def analyse_sat_solvers(games: [GameEncoder], show_png=False):
    from timeit import default_timer as timer
    from pysat.solvers import Cadical, Glucose4, Lingeling, Minisat22, Maplesat
    df = pd.DataFrame(columns=["Solver", "Execution time [sec]", "Algorithm"])
    for g in games:
        cnf_ = CNF(from_string=as_DIMACS_CNF(g.get_cnf_solution()))
        solvers = {
            "Cadical": Cadical(cnf_),
            "Glucose4": Glucose4(cnf_),
            "Lingeling": Lingeling(cnf_),
            "Minisat22": Minisat22(cnf_),
            "Maplesat": Maplesat(cnf_)
        }
        for name, solver in solvers.items():
            start = timer()
            solved = solver.solve()
            end = timer()
            delta_t = end - start
            print(name, "\tSolved:", solved, "\tTime:", delta_t)
            df = df.append(
                {
                    "Solver": name,
                    "Execution time [sec]": delta_t,
                    "Algorithm": g.algo_name
                },
                ignore_index=True)
    df.to_csv("data\\solver_analysis.csv", index=False)
    print("Saved data-frame as csv.")
    plt.yscale('log')
    sns.barplot(x="Solver", y="Execution time [sec]", hue="Algorithm", data=df)
    plt.savefig("data\\solver_performance_analysis.png")
    if show_png:
        print("Plotting graph...")
        plt.show()

    class EncodingPerformanceAnalysis:
        def __init__(self, efficient=True):
            print(
                f"EFFICIENT={efficient}: Creating and solving multiple games, this might take a while..."
            )
            paths = glob.glob("tent-inputs\\*.txt")
            self.efficient = efficient
            self.games = [
                GameEncoderBinomial.from_text_file(path,
                                                   efficient=self.efficient,
                                                   verbose=False)
                for path in paths
            ]
            self.games_cnf = [g.get_cnf_solution() for g in self.games]

        def store_metrics(self):
            df = pd.DataFrame(columns=[
                "Field-size", "Literals", "Variables", "Clauses", "Algorithm"
            ])
            for index, cnf in enumerate(self.games_cnf):
                game_size = self.games[index].capacity
                clauses_n = len(cnf)
                literals = list(chain(*cnf))
                variables = set(abs(x) for x in literals)
                df = df.append(
                    {
                        "Algorithm":
                        "Efficient" if self.efficient else "Simple",
                        "Clauses": clauses_n,
                        "Field-size": game_size,
                        "Literals": len(literals),
                        "Variables": len(variables)
                    },
                    ignore_index=True)
            df.Capacity = df.Capacity.astype(int)
            df.Literals = df.Literals.astype(int)
            df.Variables = df.Variables.astype(int)
            time_id = datetime.datetime.now().strftime('%m-%d_%H-%M-%S')
            df.to_csv(f"data\\encoding_performance_analysis_{time_id}.csv",
                      index=False)
            print("Saved data-frame as csv.")
Esempio n. 18
0
# encode(i,j,k)
# i represent the vertical line - 1
# j represent the horizontal line - 1
# j represent the value on a specific position - 1
phi6 = [[encode(0, 4, 1)], [encode(0, 7, 0)], [encode(0, 8, 6)],
        [encode(1, 1, 2)], [encode(1, 5, 6)], [encode(1, 8, 7)],
        [encode(2, 4, 8)], [encode(2, 6, 5)], [encode(3, 1, 7)],
        [encode(3, 3, 8)], [encode(3, 5, 1)], [encode(3, 7, 5)],
        [encode(4, 0, 3)], [encode(4, 2, 5)], [encode(4, 6, 2)],
        [encode(4, 8, 1)], [encode(5, 1, 1)], [encode(5, 3, 5)],
        [encode(5, 5, 2)], [encode(5, 7, 6)], [encode(6, 2, 6)],
        [encode(6, 4, 5)], [encode(7, 0, 7)], [encode(7, 3, 6)],
        [encode(7, 7, 4)], [encode(8, 0, 1)], [encode(8, 1, 4)],
        [encode(8, 4, 2)]]

# This part of the program launches the SAT solver with the conjunction of the constraints,
# ie the concatenation of the lists representing them.
with Minisat22(bootstrap_with=phi1 + phi2 + phi3 + phi4 + phi5 + phi6) as m:
    if m.solve():
        model = [decode(v) for v in m.get_model() if v > 0]

        r = [[0 for i in l] for j in l]
        for (i, j, k) in model:
            r[i][j] += k + 1
        print("\n")
        for ligne in r:
            print(ligne)

    else:
        print("There's no solution")
Esempio n. 19
0
# Zephaniah Hill
# The University of Michigan -- EECS 598
# July 2, 2018

from pysat.solvers import Solver, Minisat22  # import the needed libraries

# The formula we solve using minisat is:
# (x+y+z)*(!x+!y+!z)
# to encode these we define an integer for each variable
# {x = 1, y = 2, z = 3}
# The structure is a list of lists, where each sublist is a subformula which is ANDed to the other items in the superlist.
# (x+y+z) = [1, 2, 3]
# (!x+!y+!z) = [-1, -2, -3] the negation operator is signified by a negative integer.
CNF_formula = [[1, 2, 3], [1, 2, 3]]

with Minisat22(bootstrap_with=CNF_formula, use_timer=True) as m:
    print(m.solve())  # solve using minisat

    print(m.time())
Esempio n. 20
0
    for p in problems_all:

        if str(p) in seen_set:
            continue
        else:
            seen_set.add(str(p))

        if len(p) > 1000:
            # print("passed")
            continue

        sat = False
        # print(len(p))

        with Minisat22(bootstrap_with=p) as m:
            # g = Glucose3()
            # for l in p:
            #     g.add_clause(l)
            # # # print("loaded")
            if m.solve():
                sat = True
                solved += 1
        total += 1

        tagged_data.append((p, sat))

        # if total % 1 == 0: print(solved,total,solved/total)

    np.save(str(i) + "_tagged_data.npy", tagged_data)
    print(solved, total, solved / total)
clauses = []
for row in rows:
    nums = row.split()
    clauses.append([int(num) for num in nums[:len(nums)-1]])
    
clauses_2 = []
clauses_3 = []
solver_calls = 0

i = 0
M = []
while len(clauses) > 0:
    clauses_2 = clauses[:i]
    clauses_3 = clauses_2 + M
    
    with Minisat22(bootstrap_with=clauses_3) as m:
        solver_calls += 1
        if m.solve():
            i+=1
            model = m.get_model()
        else:
            clauses = clauses_2[:i-1]

            # if i is 0 it means that M is already unsatisfiable
            if i == 0:
                break

            M.append(clauses_2[i-1])
            i = 0
print 'solver calls', solver_calls
print 'MUS length', len(M)