Esempio n. 1
0
def test_swfn():
    """Test that we can dump SWFN without giving oil relperm"""
    wateroil = WaterOil(h=0.1)
    wateroil.add_corey_water()
    swfnstr = wateroil.SWFN()
    assert "SWFN" in swfnstr
    assert len(swfnstr) > 15
Esempio n. 2
0
def test_wo_fromtable_multiindex():
    """Test that we accept multiindex dataframes,
        (but a warning will be issued)"""
    # Test an example dataframe that easily gets sent in from ecl2df.satfunc:
    df1 = pd.DataFrame(
        columns=["KEYWORD", "SATNUM", "SW", "KRW", "KROW", "PC"],
        data=[
            ["SWOF", 1, 0, 0, 1, 2],
            ["SWOF", 1, 0.5, 0.5, 0.5, 1],
            ["SWOF", 1, 1, 1, 0, 0],
        ],
    ).set_index(["KEYWORD", "SATNUM"])

    # Check that we have a MultiIndex:
    assert len(df1.index.names) == 2

    wateroil = WaterOil(h=0.1)
    wateroil.add_fromtable(df1,
                           swcolname="SW",
                           krwcolname="KRW",
                           krowcolname="KROW",
                           pccolname="PC")
    assert "krw" in wateroil.table.columns
    assert "krow" in wateroil.table.columns
    assert "pc" in wateroil.table.columns
    check_table(wateroil.table)
Esempio n. 3
0
def test_wateroil_dual(param1, param2):
    """Test combination of 2 floats as parameters"""
    try:
        wateroil = WaterOil(swl=param1, sorw=param2)
        check_table(wateroil.table)
        # Will fail when swl > 1 - sorw
    except AssertionError:
        pass

    try:
        wateroil = WaterOil(swl=param1, swirr=param2)
        check_table(wateroil.table)
    except AssertionError:
        pass

    try:
        wateroil = WaterOil(swcr=param1, sorw=param2)
        check_table(wateroil.table)
    except AssertionError:
        pass

    try:
        wateroil = WaterOil(swirr=param1, sorw=param2)
        check_table(wateroil.table)
    except AssertionError:
        pass
Esempio n. 4
0
def test_pyscallist_basic():
    """Test that the class acts like a list"""
    p_list = PyscalList()
    assert isinstance(p_list, PyscalList)
    assert not p_list

    p_list.append(None)
    assert not p_list
    p_list.append([])
    assert not p_list

    with pytest.raises(ValueError):
        p_list.append(1)
    with pytest.raises(ValueError):
        p_list.append("foo")

    p_list.append(WaterOil())
    assert len(p_list) == 1
    assert isinstance(p_list[1], WaterOil)
    with pytest.raises(IndexError):
        # pylint: disable=W0104
        p_list[0]
    with pytest.raises(IndexError):
        # pylint: disable=W0104
        p_list[2]
    with pytest.raises(ValueError):
        p_list.append(GasOil())
    assert len(p_list) == 1

    p_list.append(WaterOil())
    assert len(p_list) == 2
Esempio n. 5
0
def test_wateroil_dual(p1, p2):
    try:
        wo = WaterOil(swl=p1, sorw=p2)
        check_table(wo.table)
        # Will fail when swl > 1 - sorw
    except AssertionError:
        pass

    try:
        wo = WaterOil(swl=p1, swirr=p2)
        check_table(wo.table)
    except AssertionError:
        pass

    try:
        wo = WaterOil(swcr=p1, sorw=p2)
        check_table(wo.table)
    except AssertionError:
        pass

    try:
        wo = WaterOil(swirr=p1, sorw=p2)
        check_table(wo.table)
    except AssertionError:
        pass
Esempio n. 6
0
def test_linear_input(h, sw_mid):
    """Linear input creates difficulties with sorw, which is used in
    add_fromtable(). The intention of the test is to avoid crashes when
    add_fromtable().

    estimate_sorw() is unreliable on linear input, and returns 0 or 1 on the
    given test dataset. Correctness of sorw should not be needed for
    add_fromtable().

    This tests fails in pyscal v0.7.7"""
    dframe = pd.DataFrame(
        columns=["SW", "KRW", "KROW", "PC"],
        data=[[sw, sw, 1 - sw, 1 - sw] for sw in [0, sw_mid, 1.0]],
    )
    wateroil = WaterOil(h=h, swl=0)
    wateroil.add_fromtable(dframe)
    assert wateroil.selfcheck()

    # GasOil did not fail in v0.7.7, but test anyway:
    gasoil = GasOil(h=h, swl=0)
    gasoil.add_fromtable(dframe,
                         sgcolname="SW",
                         krgcolname="KRW",
                         krogcolname="KROW",
                         pccolname="PCOW")
    assert gasoil.selfcheck()
Esempio n. 7
0
def test_normalized_j():
    """Test the normalized J-function correlation for capillary pressure"""
    wateroil = WaterOil(swirr=0.1, h=0.1)
    with pytest.raises(ValueError):
        wateroil.add_normalized_J(a=0.5,
                                  b=-0.2,
                                  poro=0.2,
                                  perm=10,
                                  sigma_costau=30)

    wateroil = WaterOil(swirr=0, swl=0.1, h=0.1)
    wateroil.add_normalized_J(a=0.5,
                              b=-0.2,
                              poro=0.2,
                              perm=10,
                              sigma_costau=30)
    check_table(wateroil.table)

    # Sample numerical tests taken from a prior implementation
    # NB: Prior implementation created Pc in atm, we create in bar
    bar_to_atm = 1.0 / 1.01325
    wateroil.add_normalized_J(a=0.22,
                              b=-0.5,
                              perm=100,
                              poro=0.2,
                              sigma_costau=30)
    float_df_checker(wateroil.table, "sw", 0.1, "pc", 2.039969 * bar_to_atm)
    float_df_checker(wateroil.table, "sw", 0.6, "pc", 0.056666 * bar_to_atm)
    float_df_checker(wateroil.table, "sw", 1.0, "pc", 0.02040 * bar_to_atm)
Esempio n. 8
0
def test_ow_fromtable_h(h):
    df1 = pd.DataFrame(
        columns=["Sw", "krw", "krow", "pcow"],
        data=[[0.15, 0, 1, 3], [0.89, 1, 0, 0.1], [1, 1, 0, 0]],
    )
    wo = WaterOil(h=h, swl=0.15, sorw=1 - 0.89)
    wo.add_fromtable(df1)
    check_wo_table(wo.table)
Esempio n. 9
0
def test_wo_fromtable_h(h):
    """Test making curves from tabular data with random stepsize h"""
    df1 = pd.DataFrame(
        columns=["Sw", "krw", "krow", "pcow"],
        data=[[0.15, 0, 1, 3], [0.89, 1, 0, 0.1], [1, 1, 0, 0]],
    )
    wateroil = WaterOil(h=h, swl=0.15, sorw=1 - 0.89)
    wateroil.add_fromtable(df1)
    check_table(wateroil.table)
Esempio n. 10
0
def test_normalize_pc(swirr, dswl):
    """Test that we can normalize a pc curve"""
    wateroil = WaterOil(swirr=swirr, swl=swirr + dswl)
    wateroil.add_simple_J()
    pc_max = wateroil.table["pc"].max()
    pc_min = wateroil.table["pc"].min()

    pc_fn = normalize_pc(wateroil)
    assert np.isclose(pc_fn(0), pc_max)
    assert np.isclose(pc_fn(1), pc_min)
Esempio n. 11
0
def test_simple_J_random(a, b, poro_ref, perm_ref, drho, g):
    """Test different J-function parameters.

    Parameter ranges tested through hypothesis are limited, as not
    every number is realistic. Way outside the tested intervals, you
    can get AssertionErrors or the capillary pressure may not be
    monotonically decreasing within machine precision.
    """
    wo = WaterOil(swl=0.01)
    wo.add_simple_J(a=a, b=b, poro_ref=poro_ref, perm_ref=perm_ref, drho=drho, g=g)
    check_table(wo.table)
Esempio n. 12
0
def test_norm_J_pc_random(swirr, swl, a, b, poro, perm, sigma_costau):
    """Test many possibilities of Pc-parameters.

    Outside of the tested range, there are many combination of parameters
    that can give infinite capillary pressure"""

    swl = swirr + swl  # No point in getting too many AssertionErrors
    wo = WaterOil(swirr=swirr, swl=swl, h=0.01)
    try:
        wo.add_normalized_J(a=a, b=b, perm=perm, poro=poro, sigma_costau=sigma_costau)
    except (AssertionError, ValueError):  # when poro is < 0 f.ex.
        return
    check_table(wo.table)
Esempio n. 13
0
def test_wo_fromtable_simple():
    """Test loading a simple curve from a table"""
    df1 = pd.DataFrame(columns=["SW", "KRW", "KROW", "PC"],
                       data=[[0, 0, 1, 2], [1, 1, 0, 0]])
    wateroil = WaterOil(h=0.1)
    # With wrong names:
    with pytest.raises(ValueError):
        # Here we also get a deprecation warning
        wateroil.add_oilwater_fromtable(df1)

    # Set names:
    wateroil.add_fromtable(df1, swcolname="SW")
    # This didn't do anything, because we did not provide any relperm names
    assert "krw" not in wateroil.table.columns
    assert "krow" not in wateroil.table.columns
    assert "pc" not in wateroil.table.columns

    # Try again:
    wateroil.add_fromtable(df1,
                           swcolname="SW",
                           krwcolname="KRW",
                           krowcolname="KROW",
                           pccolname="PC")
    assert "krw" in wateroil.table.columns
    assert "krow" in wateroil.table.columns
    assert "pc" in wateroil.table.columns
    check_table(wateroil.table)
Esempio n. 14
0
def test_swcrsorw():
    """Test estimate_sorw/swcr for some manually set up cases"""
    # swcr, sorw, h:
    testtuples = [
        (0, 0.3, 0.1),
        (0.01, 0.2, 0.1),
        (0.3, 0.1, 0.1),
        (0.0, 0.0, 0.1),
        (0.00001, 0.9, 0.1),
        (0.0001, 0.99, 0.1),
    ]

    for testtuple in testtuples:
        real_swcr = testtuple[0]
        real_sorw = testtuple[1]
        h = testtuple[2]
        wateroil = WaterOil(swcr=real_swcr, sorw=real_sorw, h=h)
        wateroil.add_corey_oil(now=2, kroend=0.8)
        wateroil.add_corey_water(nw=2, krwend=0.9)
        est_sorw = wateroil.estimate_sorw()
        mis = abs(est_sorw - real_sorw)
        print("Testing sorw={}, swcr={} on h={}".format(real_sorw, real_swcr, h))
        if mis > 0.01:
            print("Missed, estimated was {}".format(est_sorw))
        assert mis < h + epsilon  # Can't guarantee better than h.
        est_swcr = wateroil.estimate_swcr()
        mis_swcr = abs(est_swcr - real_swcr)
        if mis_swcr > 0.0:
            print("Missed swcr, estimate was {}".format(est_swcr))
        assert mis_swcr < h + epsilon
Esempio n. 15
0
def test_wateroil_tag(tag):
    """Test that we are unlikely to crash Eclipse
    by having ugly tag names"""
    wateroil = WaterOil(h=0.5, tag=tag)
    wateroil.add_corey_oil()
    wateroil.add_corey_water()
    sat_table_str_ok(wateroil.SWOF())
    sat_table_str_ok(wateroil.SWFN())
Esempio n. 16
0
def test_normalized_J():
    wo = WaterOil(swirr=0.1, h=0.1)
    with pytest.raises(ValueError):
        wo.add_normalized_J(a=0.5, b=-0.2, poro=0.2, perm=10, sigma_costau=30)

    wo = WaterOil(swirr=0, swl=0.1, h=0.1)
    wo.add_normalized_J(a=0.5, b=-0.2, poro=0.2, perm=10, sigma_costau=30)
    check_table(wo.table)

    # Sample numerical tests taken from a prior implementation
    # NB: Prior implementation created Pc in atm, we create in bar
    bar_to_atm = 1.0 / 1.01325
    wo.add_normalized_J(a=0.22, b=-0.5, perm=100, poro=0.2, sigma_costau=30)
    float_df_checker(wo.table, "sw", 0.1, "pc", 2.039969 * bar_to_atm)
    float_df_checker(wo.table, "sw", 0.6, "pc", 0.056666 * bar_to_atm)
    float_df_checker(wo.table, "sw", 1.0, "pc", 0.02040 * bar_to_atm)
Esempio n. 17
0
def test_wateroil_normalization(swirr, swl, swcr, sorw, h, tag):
    """Shoot with more realistic values and test normalized saturations"""
    wo = WaterOil(swirr=swirr, swl=swl, swcr=swcr, sorw=sorw, h=h, tag=tag)
    assert not wo.table.empty
    assert not wo.table.isnull().values.any()

    # Check that son is 1 at swcr:
    assert float_df_checker(wo.table, "sw", wo.swcr, "son", 1)
    # Check that son is 0 at sorw:
    if wo.sorw > h:
        assert float_df_checker(wo.table, "sw", 1 - wo.sorw, "son", 0)

    # Check that swn is 0 at swcr:
    assert float_df_checker(wo.table, "sw", wo.swcr, "swn", 0)
    # Check that swn is 1 at 1 - sorw
    if wo.sorw > 1 / SWINTEGERS:
        assert float_df_checker(wo.table, "sw", 1 - wo.sorw, "swn", 1)

    # Check that swnpc is 0 at swirr and 1 at 1:
    if wo.swirr >= wo.swl + h:
        assert float_df_checker(wo.table, "sw", wo.swirr, "swnpc", 0)
    else:
        # Let this go, when swirr is too close to swl. We
        # are not guaranteed to have sw=swirr present
        pass

    assert float_df_checker(wo.table, "sw", 1.0, "swnpc", 1)
Esempio n. 18
0
def test_wateroil_random(swirr, swl, swcr, sorw, h, tag):
    """Shoot wildly with arguments, the code should throw ValueError
    or AssertionError when input is invalid, but we don't want other crashes"""
    try:
        WaterOil(swirr=swirr, swl=swl, swcr=swcr, sorw=sorw, h=h, tag=tag)
    except AssertionError:
        pass
Esempio n. 19
0
def test_swcr():
    wo = WaterOil(swcr=0.3, swl=0.1, sorw=0.1, h=0.05)
    wo.add_corey_oil(now=2, kroend=0.8)
    wo.add_corey_water(nw=2, krwend=0.6)
    est_sorw = wo.estimate_sorw()
    est_swcr = wo.estimate_swcr()

    assert np.isclose(est_sorw, 0.1)
    assert np.isclose(est_swcr, 0.3)
Esempio n. 20
0
def test_swcr():
    """Test that we can locate swcr with a certain accuracy"""
    wateroil = WaterOil(swcr=0.3, swl=0.1, sorw=0.1, h=0.05)
    wateroil.add_corey_oil(now=2, kroend=0.8)
    wateroil.add_corey_water(nw=2, krwend=0.6)
    est_sorw = wateroil.estimate_sorw()
    est_swcr = wateroil.estimate_swcr()

    assert np.isclose(est_sorw, 0.1)
    assert np.isclose(est_swcr, 0.3)
Esempio n. 21
0
def test_LET_pc_pd():
    wo = WaterOil(swirr=0.1)
    wo.add_LET_pc_pd(Lp=1, Ep=1, Tp=1, Lt=1, Et=1, Tt=1, Pcmax=10, Pct=5)
    assert np.isclose(wo.table["pc"].max(), 10)
    assert np.isclose(wo.table["pc"].min(), 0)
    # (everything is linear)

    wo.add_LET_pc_pd(Lp=10, Ep=10, Tp=10, Lt=10, Et=10, Tt=10, Pcmax=10, Pct=5)
    assert np.isclose(wo.table["pc"].max(), 10)
    assert np.isclose(wo.table["pc"].min(), 0)
    # On a plot, you can see a kink at Pc=5.
    # wo.plotpc()

    wo = WaterOil(swirr=0.1, sorw=0.4)
    wo.add_LET_pc_pd(Lp=10, Ep=10, Tp=10, Lt=10, Et=10, Tt=10, Pcmax=5, Pct=2)
    assert np.isclose(wo.table["pc"].max(), 5)
    assert np.isclose(wo.table["pc"].min(), 0)
    # On plot: hard-to-see kink at Pc=2. Linear curve from sw=0.6 to 1 due to sorw.
    assert len(wo.table[(wo.table["sw"] >= 0.6) & (wo.table["sw"] <= 1)]) == 2
Esempio n. 22
0
def test_skjaeveland_pc():
    """Simple test of Skjæveland capillary pressure correlation"""
    wateroil = WaterOil(h=0.3, swl=0.2)
    wateroil.add_skjaeveland_pc(swr=0.1, cw=0.1, co=-0.1, aw=0.1, ao=0.1)
    check_table(wateroil.table)

    # Add with wrong numbers
    wateroil = WaterOil(h=0.3, swl=0.2, sorw=0.3)
    wateroil.add_skjaeveland_pc(swr=0.8, cw=-0.1, co=0.1, aw=-0.1, ao=-0.1)
    # (the code returns None when errors occur, no Exception)
    assert wateroil.pccomment == ""
    assert "pc" not in wateroil.table
Esempio n. 23
0
def test_not_threephase_consistency():
    wog = WaterOilGas()
    # To trigger this, we need to hack the WaterOilGas object
    # by overriding the effect of its __init__
    wog.wateroil = WaterOil(swl=0.4)
    wog.gasoil = GasOil(swl=0.2)
    wog.wateroil.add_corey_water(nw=2)
    wog.wateroil.add_corey_oil(now=2, kroend=0.9)
    wog.gasoil.add_corey_gas(ng=2)
    wog.gasoil.add_corey_oil(nog=2, kroend=1)
    assert not wog.threephaseconsistency()
Esempio n. 24
0
def test_fromtable_types():
    """Test loading from a table with incorrect types"""

    # This frame is valid, but the type was wrong. This
    # can happen if data is via CSV files, and some other rows
    # ruin the numerical interpretation of a column.
    df1 = pd.DataFrame(
        columns=["SW", "KRW", "KROW", "PC"],
        data=[["0", "0", "1", "2"], ["1", "1", "0", "0"]],
    )
    wateroil = WaterOil(h=0.1)
    wateroil.add_fromtable(df1,
                           swcolname="SW",
                           krwcolname="KRW",
                           krowcolname="KROW",
                           pccolname="PC")
    assert "krw" in wateroil.table.columns
    assert "krow" in wateroil.table.columns
    assert "pc" in wateroil.table.columns
    check_table(wateroil.table)

    gasoil = GasOil(h=0.1)
    gasoil.add_fromtable(df1,
                         sgcolname="SW",
                         krgcolname="KRW",
                         krogcolname="KROW",
                         pccolname="PC")
    assert "krg" in gasoil.table.columns
    assert "krog" in gasoil.table.columns
    assert "pc" in gasoil.table.columns
    check_table(gasoil.table)

    # But this should not make sense.
    df2 = pd.DataFrame(
        columns=["SW", "KRW", "KROW", "PC"],
        data=[["0", dict(foo="bar"), "1", "2"], ["1", "1", "0", "0"]],
    )
    wateroil = WaterOil(h=0.1)
    with pytest.raises((ValueError, TypeError)):
        wateroil.add_fromtable(df2,
                               swcolname="SW",
                               krwcolname="KRW",
                               krowcolname="KROW",
                               pccolname="PC")
    gasoil = GasOil(h=0.1)
    with pytest.raises((ValueError, TypeError)):
        gasoil.add_fromtable(df2,
                             sgcolname="SW",
                             krgcolname="KRW",
                             krogcolname="KROW",
                             pccolname="PC")
Esempio n. 25
0
def test_simple_J():
    wo = WaterOil(swl=0.01)
    wo.add_simple_J()  # swl set to zero will give infinite pc
    check_table(wo.table)
    assert wo.pccomment

    # Zero gravity:
    wo.add_simple_J(g=0)
    assert wo.table.pc.unique() == 0.0

    # This should give back Sw:
    # This ensures that density and gravity scaling is correct
    wo.add_simple_J(a=1, b=1, poro_ref=1, perm_ref=1, drho=1000, g=100)
    assert (wo.table["pc"] - wo.table["sw"]).sum() < 0.00001
Esempio n. 26
0
def gen_wo(parameters: pd.DataFrame, fast_pyscal: bool = False) -> WaterOil:
    """
    Creates a PyScal WaterOil object based on the input parameters supplied.

    Args:
        parameters: A dataframe consisting of all specified parameters.
        fast_pyscal: Run pyscal in fast-mode skipping checks. Useful for large models/ensembles.

    Returns:
        A PyScal WaterOil object

    """
    wo_relperm = WaterOil(
        swirr=parameters["swirr"],
        swl=parameters["swl"],
        swcr=parameters["swcr"],
        sorw=parameters["sorw"],
        h=H_CONSTANT,
        fast=fast_pyscal,
    )

    wo_relperm.add_corey_water(nw=parameters["nw"], krwend=parameters["krwend"])
    wo_relperm.add_corey_oil(now=parameters["now"], kroend=parameters["kroend"])

    return wo_relperm
Esempio n. 27
0
def test_linearsegments():
    """Made for testing the linear segments during
    the resolution of issue #163"""
    wateroil = WaterOil(h=0.01, swl=0.1, swcr=0.3, sorw=0.3)
    wateroil.add_corey_oil(now=10, kroend=0.5)
    wateroil.add_corey_water(nw=10, krwend=0.5)
    check_table(wateroil.table)
    check_linear_sections(wateroil)
Esempio n. 28
0
def test_wateroil_let1(l, e, t, krwend, krwmax):
    wo = WaterOil()
    try:
        wo.add_LET_oil(l, e, t, krwend, krwmax)
        wo.add_LET_water(l, e, t, krwend, krwmax)
    except AssertionError:
        # This happens for negative values f.ex.
        return
    assert "krow" in wo.table
    assert "krw" in wo.table
    assert isinstance(wo.krwcomment, str)
    check_table(wo.table)
    swofstr = wo.SWOF()
    assert len(swofstr) > 100
Esempio n. 29
0
def test_wateroil_corey1(nw, now):
    wo = WaterOil()
    try:
        wo.add_corey_oil(now=now)
        wo.add_corey_water(nw=nw)
    except AssertionError:
        # This happens for "invalid" input
        return

    assert "krow" in wo.table
    assert "krw" in wo.table
    assert isinstance(wo.krwcomment, str)
    check_table(wo.table)
    swofstr = wo.SWOF()
    assert len(swofstr) > 100
Esempio n. 30
0
def test_wateroil_let1(l, e, t, krwend, krwmax):
    """Test random LET parameters"""
    wateroil = WaterOil()
    try:
        wateroil.add_LET_oil(l, e, t, krwend)
        wateroil.add_LET_water(l, e, t, krwend, krwmax)
    except AssertionError:
        # This happens for negative values f.ex.
        return
    assert "KROW" in wateroil.table
    assert "KRW" in wateroil.table
    assert isinstance(wateroil.krwcomment, str)
    check_table(wateroil.table)
    check_linear_sections(wateroil)
    swofstr = wateroil.SWOF()
    assert len(swofstr) > 100