Esempio n. 1
0
def checkSobolIndices(sobol_indices_analytic, sobol_indices, N, plot=False):
    print("-------------- Sobol Indices (t = %i, N= %i) ------------------" % (1, N))
    for perm in sortPermutations(list(sobol_indices.keys())):
        print("S_%s = %s ~ %s (err = %g%%)" % (perm, sobol_indices_analytic[perm], sobol_indices[perm],
                                               100 * np.abs(sobol_indices_analytic[perm] - sobol_indices[perm])))
    assert np.abs(np.sum(list(sobol_indices.values())) - 1.0) < 1e-14
    assert np.abs(np.sum(list(sobol_indices_analytic.values())) - 1.0) < 1e-14

    if plot:
        names = sortPermutations(list(sobol_indices.keys()))
        values = [sobol_indices[name] for name in names]
        plotSobolIndices(values, legend=True, names=names)
        plt.show()
Esempio n. 2
0
    def runAnalysis(self, analysis, uqManager, alabel, blabel,
                    out, plot, results):
        if out:
            # ----------------------------------------------
            # write stats
            # ----------------------------------------------
            pathResults = os.path.join(self.pathResults, alabel, blabel)
            if not os.path.exists(pathResults):
                os.mkdir(pathResults)
            if self.numDims > 1:
                print("sobol indices")
                analysis.writeSensitivityValues(os.path.join(pathResults, alabel))
            print("surpluses")
            analysis.writeSurplusesLevelWise(os.path.join(pathResults, alabel))
            print("stats")
            analysis.writeStats(os.path.join(pathResults, alabel))
            print("moments")
            analysis.writeMoments(os.path.join(pathResults, alabel))
            print("sampling")
            path = os.path.join(pathResults, "samples")
            if not os.path.exists(path):
                os.mkdir(path)
            analysis.sampleGrids(os.path.join(path, alabel))

        # ----------------------------------------------
        # do some plotting
        # ----------------------------------------------
        ts = uqManager.getKnowledge().getAvailableTimeSteps()
        sobolIndices = np.zeros((len(ts), 2 ** len(self.params.activeParams()) - 1))
        for i, t in enumerate(ts):
            grid, alpha = uqManager.getKnowledge()\
                                   .getSparseGridFunction(uqManager.getQoI(), t)
            print("-" * 80)
            print("plot: t=%g (i=%i), N=%i" % (t, i, grid.getSize()))

            # scatter plot of surpluses level wise
            surpluses = analysis.computeSurplusesLevelWise(t)
            maxLevel = grid.getStorage().getMaxLevel()

            if out and plot:
                fig = plotSurplusLevelWise(surpluses, maxLevel)
                fig.savefig(os.path.join(pathResults, "surpluses_t%g") % t)
                plt.close(fig)

                (fig, ax), A = plotSGNodal3d(grid, alpha)
                ax.set_xlabel("x")
                ax.set_ylabel("y")
                fig.savefig(os.path.join(pathResults, "nodal_t%g.png" % t))
                plt.close(fig)

                # plot sparse grid approximation
                if self.numDims < 3:
                    if self.numDims == 1:
                        fig = plt.figure()
                        plotSG1d(grid, alpha)
                        plt.xlabel("x")
                    elif self.numDims == 2:
                        fig, ax, _ = plotSG3d(grid, alpha)
                        ax.set_xlabel("x")
                        ax.set_ylabel("y")
                    fig.savefig(os.path.join(pathResults, "function_t%g.png" % t))
                    plt.close(fig)

                # write nodal values to file
                writeDataARFF({"filename": os.path.join(pathResults, "nodal_t%g.arff" % t),
                               "names": self.params.activeParams().getNames() + ["value"],
                               "data": DataMatrix(A)})

            # show sobol indices
            me = None
            te = None
            if self.numDims > 1:
                anova = analysis.getAnovaDecomposition(t=t)
                me = anova.getSobolIndices()
                print("-------------- Sobol Indices (t = %i) ------------------" % t)
                for j, perm in enumerate(anova.getSortedPermutations(list(me.keys()))):
                    print("%s: %s" % (perm, me[perm]))
                    sobolIndices[i, j] = me[perm]
                print(sum(sobolIndices[i, :]), "==", 1)

                # ----------------------------------------------------------
                # total effects
                te = anova.getTotalEffects()
                print("-------------- Total Effects (t = %i) -----------------" % t)
                for key, val in sorted(te.items()):
                    print("%s: %s" % (key, val))
                print("---------------------------------------------------------")
                print()

            if t not in results["results"]:
                results["results"][t] = {}

            results["knowledge_types"] = uqManager.getKnowledgeTypes()
            results["results"][t][maxLevel] = {}
            results["results"][t][maxLevel]["grid_size"] = grid.getSize()
            results["results"][t][maxLevel]["maxLevel"] = maxLevel
            results["results"][t][maxLevel]["surpluses"] = surpluses
            results["results"][t][maxLevel]["sobol_indices"] = me
            results["results"][t][maxLevel]["total_effects"] = te
            results["results"][t][maxLevel]["stats"] = uqManager.stats

            results["results"][t][maxLevel]["mean_estimated_per_iteration"] = {}
            for it, res in list(analysis.mean(ts=[t], reduce=False).items()):
                results["results"][t][maxLevel]["mean_estimated_per_iteration"][it] = res["value"]
            # maximum iteration -> final value
            it = max(results["results"][t][maxLevel]["mean_estimated_per_iteration"].keys())
            results["results"][t][maxLevel]["mean_estimated"] = \
                results["results"][t][maxLevel]["mean_estimated_per_iteration"][it]

            results["results"][t][maxLevel]["var_estimated_per_iteration"] = {}
            for it, res in list(analysis.var(ts=[t], reduce=False).items()):
                results["results"][t][maxLevel]["var_estimated_per_iteration"][it] = res["value"]
            # maximum iteration -> final value
            it = max(results["results"][t][maxLevel]["var_estimated_per_iteration"].keys())
            results["results"][t][maxLevel]["var_estimated"] = \
                results["results"][t][maxLevel]["var_estimated_per_iteration"][it]
        # --------------------------------------------

        if out and plot and self.numDims > 1:
            names = anova.getSortedPermutations(list(me.keys()))
            fig = plotSobolIndices(sobolIndices, ts=ts, legend=True, names=names)
            fig.savefig(os.path.join(pathResults, "sobol.png"))
            plt.close(fig)
Esempio n. 3
0
    def testAnova(self):
        # ----------------------------------------------------------
        # define the learner
        # ----------------------------------------------------------
        # define UQ setting
        builder = ASGCUQManagerBuilder()
        builder.withParameters(self.params)\
               .withTypesOfKnowledge([KnowledgeTypes.SIMPLE,
                                      KnowledgeTypes.SQUARED,
                                      KnowledgeTypes.EXPECTATIONVALUE])\
               .useInterpolation()

        builder.defineUQSetting().withSimulation(self.simulation)

        samplerSpec = builder.defineSampler()
        samplerSpec.withGrid().hasType(GridType_PolyBoundary)\
                              .withLevel(4)\
                              .withDegree(5)\
                              .withBoundaryLevel(1)

        # ----------------------------------------------------------
        # discretize the stochastic space with the ASGC method
        # ----------------------------------------------------------
        uqManager = builder.andGetResult()

        # ----------------------------------------------
        # first run
        while uqManager.hasMoreSamples():
            uqManager.runNextSamples()

        # ----------------------------------------------------------
        # specify ASGC estimator
        # ----------------------------------------------------------
        analysis = ASGCAnalysisBuilder().withUQManager(uqManager)\
                                        .withAnalyticEstimationStrategy()\
                                        .andGetResult()

        # ----------------------------------------------------------
        # expectation values and variances
        _, _ = analysis.mean(), analysis.var()

        # ----------------------------------------------------------
        # estimated anova decomposition
        anova = analysis.getAnovaDecomposition(nk=len(self.params))

        # ----------------------------------------------------------
        # check interpolation and decomposition
        m = np.random.rand(100, self.params.getDim())
        for i in range(m.shape[0]):
            self.assertTrue(abs(analysis.eval(m[i, :]) - anova.eval(m[i, :])) < 1e-14)

        # ----------------------------------------------------------
        # main effects
        me = anova.getSobolIndices()

        print("-------------- Sobol Indices (t = %i) ------------------" % 1)
        for (key, val) in sorted(me.items()):
            print("%s: %s" % (key, val))
        print(sum([val for val in list(me.values())]), "==", 1)

        # ----------------------------------------------------------
        # total effects
        te = anova.getTotalEffects()
        print("-------------- Total Effects (t = %i) -----------------" % 1)
        for key, val in sorted(te.items()):
            print("%s: %s" % (key, val))
        print("---------------------------------------------")
        print()

        names = anova.getSortedPermutations(list(me.keys()))
        values = [me[name] for name in names]
        fig, _ = plotSobolIndices(values, legend=True, names=names)
        fig.show()
        plt.show()