Esempio n. 1
0
def project(grid, dims):
    """
    Project all grid points to the given dimensions

    @param grid: Grid sparse grid
    @param dims: list dimensions to which the grid points are projected
    """
    gs = grid.getStorage()

    # create a new empty grid
    dim = len(dims)
    gps = [None] * gs.getSize()

    # run over all grid points in grid and
    # project them to the dimensions dims
    for i in range(gs.getSize()):
        gp = gs.getPoint(i)
        ngp = HashGridPoint(dim)
        # copy level index to new grid point
        for k, d in enumerate(dims):
            ngp.set(k, gp.getLevel(d), gp.getIndex(d))
        # insert it to the new grid
        gps[i] = ngp

    # compute new basis
    ngrid = createGrid(grid, len(dims))
    basis = getBasis(ngrid)
    return gps, basis
Esempio n. 2
0
    def findIntersectionsOfOverlappingSuppportsForOneGridPoint(
            self, gpi, gpsj, overlap, grid):
        numDims = gpi.getDimension()
        gs = grid.getStorage()

        # find all possible intersections of grid points
        comparisonCosts = 0
        for j, gpj in list(gpsj.items()):
            if not isHierarchicalAncestor(gpi, gpj):
                comparisonCosts += 1
                if haveOverlappingSupport(gpi, gpj):
                    levelOuter, indexOuter = self.findOuterIntersection(
                        gpi, gpj)
                    if (levelOuter, indexOuter) not in overlap:
                        gpOuterIntersection = HashGridPoint(self.numDims)
                        for idim in range(self.numDims):
                            gpOuterIntersection.set(idim, levelOuter[idim],
                                                    indexOuter[idim])

                        # TODO: this might not be correct
                        # -> it does work for a few test cases but this might
                        #    be a coincidence
#                         if not gs.isContaining(gpOuterIntersection):
                        overlap[levelOuter,
                                indexOuter] = gpi, gpj, gpOuterIntersection

        return comparisonCosts
Esempio n. 3
0
    def transformToReferenceGrid(self, globalGrid):
        # 1. set the root node of the local grid
        localRoot = {'level': self.level, 'index': self.index}

        # 2. shift and scale the global grid to the local one
        localGrid = {}

        locallevels = np.ndarray(self.numDims, dtype="int")
        localindices = np.ndarray(self.numDims, dtype="int")

        for levelsGlobal, indicesGlobal in list(globalGrid.keys()):
            gpdd = HashGridPoint(self.numDims)
            for idim in range(self.numDims):
                lg, ig = levelsGlobal[idim], indicesGlobal[idim]
                llroot, ilroot = localRoot['level'][idim], localRoot['index'][
                    idim]

                # compute level and index of local grid
                # 1 -> level index of global root node, always the same
                locallevels[idim] = int(lg + (llroot - 1))
                localindices[idim] = int(ig + (ilroot - 1) * 2**(lg - 1))
                gpdd.set(idim, locallevels[idim], localindices[idim])

            localGrid[(tuple(locallevels), tuple(localindices))] = gpdd

        return localGrid
Esempio n. 4
0
    def lookupFullGridPointsRec1d(self, grid, alpha, gp, d, p, opEval, maxLevel, acc):
        gs = grid.getStorage()
        level, index = gp.getLevel(d), gp.getIndex(d)

        # if the function value for the left child
        # is negtive, then add it with all its
        # hierarchical ancestors
        gp.getLeftChild(d)
        gp.getStandardCoordinates(p)
        if opEval.eval(alpha, p) < 0:
            acc.append(HashGridPoint(gp))

        if level + 1 < maxLevel:
            self.lookupFullGridPointsRec1d(grid, alpha, gp, d, p, opEval, maxLevel, acc)

        # if the function value for the right child
        # is negtive, then add it with all its
        # hierarchical ancestors
        gp.set(d, level, index)
        gp.getRightChild(d)
        gp.getStandardCoordinates(p)
        if opEval.eval(alpha, p) < 0:
            acc.append(HashGridPoint(gp))

        # store them for next round
        if level + 1 < maxLevel:
            self.lookupFullGridPointsRec1d(grid, alpha, gp, d, p, opEval, maxLevel, acc)

        # reset the grid point
        gp.set(d, level, index)
Esempio n. 5
0
    def copy(localFullGrid):
        numDims = localFullGrid.numDims
        gp = HashGridPoint(numDims)
        for idim in range(numDims):
            gp.set(idim, localFullGrid.level[idim], localFullGrid.index[idim])

        fullGrid = LocalFullGrid(localFullGrid.grid, gp,
                                 np.array(localFullGrid.fullGridLevels))

        return fullGrid
Esempio n. 6
0
    def computeCandidates(self, sortedOverlap, localFullGridLevels, grid,
                          alpha):
        # create full grid locally
        gs = grid.getStorage()
        maxLevel = gs.getMaxLevel()
        ans = {}
        costs = 0

        while len(sortedOverlap) > 0:
            numLocalGridPoints, levels, indices, (ranges, gpi,
                                                  gpj) = sortedOverlap.pop()

            # do not consider intersection if it is already part of the local grid
            # -> TODO: if an intersection is already part of some other local grid
            #          then there exists an ancestor in the list of intersections.
            #          Check first if there are ancestors available and if yes,
            #          remove the successor node from the intersection list
            if (levels, indices) not in ans:
                globalGrid = self.computeAnisotropicFullGrid(
                    levels, indices, localFullGridLevels[levels, indices])
                costs += len(globalGrid)
                assert numLocalGridPoints == len(globalGrid)

                # 1. set the root node of the local grid
                localRoot = {'level': levels, 'index': indices}

                # 2. shift and scale the global grid to the local one
                localGrid = {}
                levels = [None] * self.numDims
                indices = [None] * self.numDims
                for levelsGlobal, indicesGlobal in list(globalGrid.keys()):
                    gpdd = HashGridPoint(self.numDims)
                    for idim in range(self.numDims):
                        lg, ig = levelsGlobal[idim], indicesGlobal[idim]
                        llroot, ilroot = localRoot['level'][idim], localRoot[
                            'index'][idim]

                        # compute level and index of local grid
                        # 1 -> level index of global root node, always the same
                        levels[idim] = int(lg + (llroot - 1))
                        indices[idim] = int(ig + (ilroot - 1) * 2**(lg - 1))
                        gpdd.set(idim, levels[idim], indices[idim])

                    if not gs.isContaining(gpdd):
                        localGrid[(tuple(levels), tuple(indices))] = gpdd

                if self.plot and self.numDims == 2:
                    self.plotDebug(grid, alpha, localGrid, gpi, gpj, ans)

                assert len(localGrid) > 0
                oldSize = len(ans)
                ans.update(localGrid)
                assert len(ans) > oldSize

        return list(ans.values()), costs
Esempio n. 7
0
def parent(grid, gp, d):
    # get parent
    level = gp.getLevel(d) - 1
    index = gp.getIndex(d) / 2 + ((gp.getIndex(d) + 1) / 2) % 2

    if isValid1d(grid, level, index):
        # create parent
        ans = HashGridPoint(gp)
        ans.set(d, level, index)
        return ans

    return None
Esempio n. 8
0
    def findIntersections(self, grid, currentSubspaces):
        gs = grid.getStorage()
        numDims = gs.getDimension()
        maxLevel = gs.getMaxLevel()
        subspaces = np.vstack(list(currentSubspaces.keys()))
        costs = 0

        # enumerate all the available subspaces in the grid
        intersections = {}
        alreadyChecked = {}

        gpintersection = HashGridPoint(numDims)
        level, index = np.ndarray(numDims,
                                  dtype="int"), np.ndarray(numDims,
                                                           dtype="int")

        while len(currentSubspaces) > 0:
            nextSubspaces = {}
            levels = list(currentSubspaces.keys())
            for i in range(len(levels)):
                levelk = levels[i]
                gpsk = currentSubspaces[levelk]
                for j in range(i + 1, len(levels)):
                    levell = levels[j]
                    gpsl = currentSubspaces[levell]
                    for gpk in gpsk:
                        for gpl in gpsl:
                            if haveOverlappingSupportByLevelIndex(gpk, gpl) and \
                                    not haveHierarchicalRelationshipByLevelIndex(gpk, gpl):
                                # compute intersection
                                self.findIntersection(gpintersection,
                                                      (level, index), gpk, gpl)
                                tlevel, tindex = tuple(level), tuple(index)
                                if (tlevel, tindex) not in intersections:
                                    intersections[tlevel,
                                                  tindex] = HashGridPoint(
                                                      gpintersection)
                                    if (tlevel, tindex) not in alreadyChecked:
                                        alreadyChecked[tlevel, tindex] = True
                                        if tlevel not in nextSubspaces:
                                            nextSubspaces[tlevel] = [(tlevel,
                                                                      tindex)]
                                        else:
                                            nextSubspaces[tlevel].append(
                                                (tlevel, tindex))

                            costs += 1

            currentSubspaces = nextSubspaces

        return list(intersections.values()), costs
Esempio n. 9
0
def insertTruncatedBorder(grid, gp):
    """
    insert points on the border recursively for grids with border
    @param grid: Grid
    @param gp: HashGridPoint
    @return: list of HashGridPoint, contains all the newly added grid points
    """
    gs = grid.getStorage()
    gps = [gp]
    numDims = gp.getDimension()
    ans = []
    while len(gps) > 0:
        gpi = gps.pop()
        for d in range(numDims):
            # right border in d
            rgp = HashGridPoint(gpi)
            rgp.getRightLevelZero(d)
            # insert the point
            if not gs.isContaining(rgp):
                added_grid_points = insertPoint(grid, rgp)
                if len(added_grid_points) > 0:
                    ans += added_grid_points
                    gps.append(rgp)

            # left border in d
            lgp = HashGridPoint(gpi)
            lgp.getLeftLevelZero(d)
            # insert the point
            if not gs.isContaining(lgp):
                added_grid_points = insertPoint(grid, lgp)
                if len(added_grid_points) > 0:
                    ans += added_grid_points
                    gps.append(lgp)
    return ans
Esempio n. 10
0
def balance(grid):
    gs = grid.getStorage()
    newgps = []

    for gp in [gs.getPoint(i) for i in range(gs.getSize())]:
        for dim in range(gs.getDimension()):
            # left child in dimension dim
            lgp = HashGridPoint(gp)
            lgp.getLeftChild(dim)

            # right child in dimension dim
            rgp = HashGridPoint(gp)
            rgp.getRightChild(dim)

            if gs.isContaining(lgp) and not gs.isContaining(rgp):
                inserted = insertPoint(grid, rgp)
            elif gs.isContaining(rgp) and not gs.isContaining(lgp):
                inserted = insertPoint(grid, lgp)
            else:
                inserted = []

            newgps += inserted
            gs.recalcLeafProperty()

    return newgps
Esempio n. 11
0
    def findCandidates(self, grid, alpha):
        gs = grid.getStorage()
        candidates = {}

        # lookup dimension-wise
        for d in range(gs.getDimension()):
            # compute starting points by level sum
            anchors = []
            for i in range(gs.getSize()):
                accLevel = gs.getPoint(i).getLevel(d)
                if accLevel == 1:
                    anchors.append(i)

            while len(anchors) > 0:
                # get next starting node
                ix = anchors.pop(0)
                gp = gs.getPoint(ix)
                acc = []
                self.findCandidatesSweep1d(d, gp, alpha, grid, acc, False)
                # store candidates
                for gp in acc:
                    ix = gs.getSequenceNumber(gp)
                    if ix not in candidates:
                        candidates[ix] = HashGridPoint(gp)

        return list(candidates.values())
Esempio n. 12
0
    def findCandidates(self, grid, alpha, addedGridPoints):
        """
        collect all leaf nodes with at least one negative hierarchical
        ancestor
        """
        # collect all leaf nodes with at least one negative hierarchical
        # ancestor
        refinementCandidates = []
        gs = grid.getStorage()
        numDims, numGridPoints = gs.getDimension(), gs.getSize()
        maxLevel = gs.getMaxLevel()

        self.costs = 0
        if self.iteration == 0:
            candidates = []
            for i in range(numGridPoints):
                self.costs += 1
                gp = gs.getPoint(i)
                if alpha[i] < 0.0:
                    candidates.append(HashGridPoint(gp))
                    self.minLevelSum = min(self.minLevelSum, gp.getLevelSum())
                    self.maxLevelSum = max(self.maxLevelSum, gp.getLevelSum())

            # refine all the grid points up to the maximum level sum
            # -> let the search progressing uniformly such that
            #    we look at grid points with the same level sum at most once
            #    to achieve the minimum amount of grid points
            # this corresponds basically to the search of all leaf nodes with
            # an ancestor of negative coefficient
            refinementCandidates = []
            for gp in candidates:
                diff = self.maxLevelSum - gp.getLevelSum()
                if diff == 0:
                    refinementCandidates.append(gp)
                else:
                    newCandidates = [gp]
                    for i in range(diff):
                        while len(newCandidates) > 0:
                            candidate = newCandidates.pop()
                            children = self.getAllChildrenNodesUpToMaxLevel(
                                candidate, maxLevel, grid)
                            for childCandidate in list(children.values()):
                                if childCandidate.getLevelSum(
                                ) == self.maxLevelSum:
                                    refinementCandidates.append(childCandidate)
                                elif childCandidate.getLevelSum(
                                ) < self.maxLevelSum:
                                    newCandidates.append(childCandidate)
        else:
            refinementCandidates = list(self.newCandidates.values())

        self.newCandidates = {}
        self.candidates = []
        for gp in refinementCandidates:
            children = self.getAllChildrenNodesUpToMaxLevel(gp, maxLevel, grid)
            for (level, index), ngp in list(children.items()):
                if (level, index) not in self.newCandidates:
                    if not gs.isContaining(ngp):
                        self.candidates.append(ngp)
                    self.newCandidates[level, index] = ngp
Esempio n. 13
0
def checkPositivity(grid, alpha):
    # define a full grid of maxlevel of the grid
    gs = grid.getStorage()
    fullGrid = Grid.createLinearGrid(gs.getDimension())
    fullGrid.getGenerator().full(gs.getMaxLevel())
    fullHashGridStorage = fullGrid.getStorage()
    A = np.ndarray(
        (fullHashGridStorage.getSize(), fullHashGridStorage.getDimension()))
    p = DataVector(gs.getDimension())
    for i in range(fullHashGridStorage.getSize()):
        fullHashGridStorage.getCoordinates(fullHashGridStorage.getPoint(i), p)
        A[i, :] = p.array()
    negativeGridPoints = {}
    res = evalSGFunctionMulti(grid, alpha, A)
    ymin, ymax, cnt = 0, -1e10, 0
    for i, yi in enumerate(res):
        #         print( A[i, :], yi )
        if yi < -1e-11:
            cnt += 1
            negativeGridPoints[i] = yi, HashGridPoint(
                fullHashGridStorage.getPoint(i))
            ymin = min(ymin, yi)
            ymax = max(ymax, yi)
#             print( "  %s = %g" % (A[i, :], yi) )
    if cnt > 0:
        print("warning: function is not positive")
        print("%i/%i: [%g, %g]" %
              (cnt, fullHashGridStorage.getSize(), ymin, ymax))

    return negativeGridPoints
Esempio n. 14
0
    def getAllChildrenNodesUpToMaxLevel(self, gp, maxLevel, grid):
        children = {}
        gs = grid.getStorage()

        for idim in range(gp.getDimension()):
            if gp.getLevel(idim) < maxLevel:
                self.costs += 1
                gpl = HashGridPoint(gp)
                gp.getLeftChild(idim)
                level, index = tuple(getLevel(gpl)), tuple(getIndex(gpl))
                children[level, index] = gpl

                # get right child
                self.costs += 1
                gpr = HashGridPoint(gp)
                gpr.getRightChild(idim)
                level, index = tuple(getLevel(gpr)), tuple(getIndex(gpr))
                children[level, index] = gpr
        return children
Esempio n. 15
0
    def getMaxLevelOfChildrenUpToMaxLevel(self, gp, grid, idim):
        gs = grid.getStorage()
        children = []
        gps = [gp]
        while len(gps) > 0:
            currentgp = gps.pop()
            children.append(getLevel(currentgp))
            if currentgp.getLevel(idim) < self.maxLevel:
                gpl = HashGridPoint(currentgp)
                gpl.getLeftChild(idim)
                if gs.isContaining(gpl):
                    gps.append(gpl)

                # get right child
                gpr = HashGridPoint(currentgp)
                gs.right_child(gpr, idim)
                if gs.isContaining(gpr):
                    gps.append(gpr)

        return children
Esempio n. 16
0
def extend_grid_1d(grid, *args, **kws):
    gs = grid.getStorage()
    accLevel = gs.getMaxLevel()
    dim = gs.getDimension()

    # create dim+1 dimensional grid of level 0
    new_grid = createGrid(grid, dim + 1, *args, **kws)

    # create 1 dimensional reference grid of level accLevel
    ref_grid = createGrid(grid, 1)
    ref_grid.getGenerator().regular(accLevel)  # == full grid in dim = 1
    ref_gs = ref_grid.getStorage()

    # create cross product between the 1d and the dimd-grid
    for i in range(gs.getSize()):
        gp = gs.getPoint(i)
        new_gp = HashGridPoint(dim + 1)

        # copy level index vectors from old grid to the new one
        for d in range(gs.getDimension()):
            new_gp.set(d, gp.getLevel(d), gp.getIndex(d))

        # get the indices in the missing dimension
        for j in range(ref_gs.getSize()):
            ref_gp = ref_gs.getPoint(j)
            new_gp.set(dim, ref_gp.getLevel(0), ref_gp.getIndex(0))
            insertPoint(new_grid, new_gp)

    return new_grid
Esempio n. 17
0
def hasChildren(grid, gp):
    gs = grid.getStorage()
    d = 0
    gpn = HashGridPoint(gp)
    while d < gs.getDimension():
        # load level index
        level, index = gp.getLevel(d), gp.getIndex(d)
        # check left child in d
        gp.getLeftChild(d)
        if gs.isContaining(gpn):
            return True

        # check right child in d
        gp.set(d, level, index)
        gp.getRightChild(d)
        if gs.isContaining(gpn):
            return True

        gpn.set(d, level, index)
        d += 1

    return False
Esempio n. 18
0
def projectList(gps, dims):
    """
    Project all grid points to the given dimensions

    @param gps: list of grid points
    @param dims: list dimensions to which the grid points are projected
    """
    # create a new empty grid
    dim = len(dims)
    projected_gps = [None] * len(gps)

    # run over all grid points in grid and
    # project them to the dimensions dims
    for i, gp in enumerate(gps):
        projected_gp = HashGridPoint(dim)
        # copy level index to new grid point
        for k, d in enumerate(dims):
            projected_gp.set(k, gp.getLevel(d), gp.getIndex(d))
        # insert it to the list of projected grid points
        projected_gps[i] = projected_gp

    return projected_gps
Esempio n. 19
0
    def addChildren(self, grid, gp):
        gs = grid.getStorage()
        for d in range(gs.getDimension()):
            # check left child in d
            gpl = HashGridPoint(gp)
            gpl.getLeftChild(d)
            if not gs.isContaining(gpl) and isValid(grid, gpl) and \
                    self.checkRange(gpl, self.maxLevel):
                self.addCollocationNode(grid, gpl)

            # check right child in d
            gpr = HashGridPoint(gp)
            gpr.getRightChild(d)
            if not gs.isContaining(gpr) and isValid(grid, gpr) and \
                    self.checkRange(gpr, self.maxLevel):
                self.addCollocationNode(grid, gpr)
Esempio n. 20
0
    def findCandidates(self, grid, alpha, addedGridPoints):
        fullGridStorage = self.fullGrid.getStorage()
        gs = grid.getStorage()

        if self.iteration == 0:
            self.costs += fullGridStorage.getSize()
        elif len(addedGridPoints) == 0:
            return

        opEval = createOperationEval(grid)
        for i in range(fullGridStorage.getSize()):
            gp = fullGridStorage.getPoint(i)
            if not gs.isContaining(gp):
                self.candidates.append(HashGridPoint(gp))
Esempio n. 21
0
def isRefineable(grid, gp):
    gs = grid.getStorage()
    for d in range(gs.getDimension()):
        # left child in dimension dim
        gpl = HashGridPoint(gp)
        gpl.getLeftChild(d)
        if not gs.isContaining(gpl) and isValid(grid, gpl):
            return True

        # right child in dimension dim
        gpr = HashGridPoint(gp)
        gpr.getRightChild(d)
        if not gs.isContaining(gpr) and isValid(grid, gpr):
            return True

    return False
Esempio n. 22
0
    def findIntersectionsOfOverlappingSuppportsForOneGridPoint(
            self, i, gpi, gpsj, overlap, grid, alpha):
        numDims = gpi.getDimension()
        gs = grid.getStorage()
        gpintersection = HashGridPoint(self.numDims)

        # find all possible intersections of grid points
        comparisonCosts = fullGridCosts = 0
        for j, gpj in list(gpsj.items()):
            comparisonCosts += 1
            idim = 0
            ranges = []
            while idim < numDims:
                # get level index
                lid, iid = gpi.getLevel(idim), gpi.getIndex(idim)
                ljd, ijd = gpj.getLevel(idim), gpj.getIndex(idim)

                # check if they have overlapping support
                xlowi, xhighi = getBoundsOfSupport(lid, iid)
                xlowj, xhighj = getBoundsOfSupport(ljd, ijd)

                xlow = max(xlowi, xlowj)
                xhigh = min(xhighi, xhighj)

                # different level but not ancestors
                if xlow >= xhigh:
                    break
                else:
                    ranges.append([xlow, xhigh])

                idim += 1

            # check whether the supports are overlapping
            # in all dimensions
            if idim == numDims:
                ancestors_gpj = [(0, gpj)] + getHierarchicalAncestors(
                    grid, gpj)
                for _, ancestor_gpj in ancestors_gpj:
                    fullGridCosts += 1
                    level, index = self.findIntersection(gpi, ancestor_gpj)
                    gpintersection = HashGridPoint(self.numDims)
                    for idim in range(self.numDims):
                        gpintersection.set(idim, level[idim], index[idim])

                    if not gs.isContaining(gpintersection):

                        if self.plot and self.numDims == 2:
                            self.plotDebug(grid, alpha, {1: gpintersection},
                                           gpi, gpj, overlap)

                        overlap[level, index] = gpintersection

        return comparisonCosts, fullGridCosts
Esempio n. 23
0
def insert_children(grid, gp, d):
    cnt = []
    gs = grid.getStorage()

    # left child in dimension dim
    gpl = HashGridPoint(gp)
    gpl.getLeftChild(d)
    if not gs.isContaining(gpl) and isValid(grid, gpl):
        success = gs.insert(gpl) > -1
        cnt += 1 if success else 0

    # right child in dimension dim
    gpr = HashGridPoint(gp)
    gpr.getRightChild(d)
    if not gs.isContaining(gpr) and isValid(grid, gpr):
        success = gs.insert(gpr) > -1
        cnt += 1 if success else 0

    return cnt
Esempio n. 24
0
def insertPoint(grid, gp):
    """
    insert a grid point to the storage if it is valid. Returns the
    sequence number of the new grid point in the storage
    """
    gs = grid.getStorage()

    if gs.isContaining(gp) or not isValid(grid, gp):
        return []

    added_grid_points = SizeVector()
    gs.insert(HashGridPoint(gp), added_grid_points) > -1

    ans = []
    for i in added_grid_points:
        ans.append(gs.getPoint(i))

    return ans
Esempio n. 25
0
def copyGrid(grid, level=0, deg=1):
    # create new grid
    gs = grid.getStorage()
    dim = gs.getDimension()
    newGrid = createGrid(grid, dim, deg)
    if level > 0:
        newGrid.getGenerator().regular(level)
    newGs = newGrid.getStorage()
    # insert grid points
    for i in range(gs.getSize()):
        gp = gs.getPoint(i)

        # insert grid point
        if not newGs.isContaining(gp):
            newGs.insert(HashGridPoint(gp))

    newGs.recalcLeafProperty()
    return newGrid
Esempio n. 26
0
    def refine(self, grid, gp):
        ans = []
        gs = grid.getStorage()
        for d in range(gs.getDimension()):
            gpl = HashGridPoint(gp)
            gpl.getLeftChild(d)
            if isValid(grid, gpl):
                ans += insertPoint(grid, gpl)
                if hasBorder(grid.getType()):
                    ans += insertTruncatedBorder(grid, gpl)

            gpr = HashGridPoint(gp)
            gpr.getRightChild(d)
            if isValid(grid, gpr):
                ans += insertPoint(grid, gpr)
                if hasBorder(grid.getType()):
                    ans += insertTruncatedBorder(grid, gpr)

        gs.recalcLeafProperty()
        return ans
Esempio n. 27
0
    def getLocalMaxLevel(self, dup, levels, indices, grid):
        gp = HashGridPoint(self.numDims)
        for idim, (level, index) in enumerate(zip(levels, indices)):
            gp.set(idim, level, index)

        # up in direction d to the root node
        diffLevels = np.zeros(self.numDims)
        for idim in range(self.numDims):
            # search for children
            # as long as the corresponding grid point exist in the grid
            gp.set(idim, 1, 1)
            if self.verbose:
                print(" %i: root (%i) = %s" %
                      (dup, idim,
                       (tuple(getLevel(gp)), tuple(getIndex(gp)),
                        tuple([gp.getCoord(i) for i in range(self.numDims)]))))

            currentgp = HashGridPoint(gp)
            diffLevels[idim] = self.getMaxLevelOfChildrenUpToMaxLevel(
                currentgp, grid, idim)

        return diffLevels
Esempio n. 28
0
    def test_freeRefineSubspaceIsotropic(self):
        """Refine the isotropic middle subspace"""
        alpha = DataVector(self.grid.getSize())
        alpha.setAll(1.0)
        for i in [13, 14, 15, 16]:
            alpha[i] = 2.
        #refinement  stuff
        refinement = HashRefinement()
        decorator = SubspaceRefinement(refinement)
        # refine a single grid point each time
        functor = SurplusRefinementFunctor(alpha, 1)
        decorator.free_refine(self.HashGridStorage, functor)
        for i in range(self.grid.getSize()):
            HashGridPoint = self.HashGridStorage.getPoint(i)

        self.assertEqual(self.grid.getSize(), 33)

        for i in range(self.grid.getSize()):
            HashGridPoint = self.HashGridStorage.getPoint(i)
            levelIndex = eval(HashGridPoint.toString())
            self.assertFalse(levelIndex[0] == 4 or levelIndex[2] == 4)
Esempio n. 29
0
    def split(self, idim):
        # split the current grid up into three new ones
        gs = self.grid.getStorage()

        # central grid
        centralFullGrid = LocalFullGrid.copy(self)
        centralFullGrid.fullGridLevels[idim] = 1

        # left grid
        gpLeft = HashGridPoint(self.gp)
        gpLeft.getLeftChild(idim)
        fullGridLevels = np.array(self.fullGridLevels)
        fullGridLevels[idim] -= 1
        leftFullGrid = LocalFullGrid(self.grid, gpLeft, fullGridLevels)

        # right grid
        gpRight = HashGridPoint(self.gp)
        gpRight.getRightChild(idim)
        fullGridLevels = np.array(self.fullGridLevels)
        fullGridLevels[idim] -= 1
        rightFullGrid = LocalFullGrid(self.grid, gpRight, fullGridLevels)

        return centralFullGrid, leftFullGrid, rightFullGrid
Esempio n. 30
0
    def getLocalMaxLevel(self, dup, levels, indices, grid):
        gp = HashGridPoint(self.numDims)
        for idim, (level, index) in enumerate(zip(levels, indices)):
            gp.set(idim, level, index)

        # up in direction d to the root node
        gp.set(dup, 1, 1)
        # down as far as possible in direction d + 1 mod D
        ddown = (dup + 1) % self.numDims

        # search for children
        # as long as the corresponding grid point exist in the grid
        children = self.getMaxLevelOfChildrenUpToMaxLevel(gp, grid, ddown)
        maxLevel = int(max(1, np.max(children)))

        return maxLevel, ddown