def example():
    """
    example that plots the power spectrum of Mars topography data
    """
    # --- input data filename ---
    infile = os.path.join(os.path.dirname(__file__),
                          '../../ExampleDataFiles/MarsTopo719.shape')
    coeffs, lmax = shio.shread(infile)

    # --- plot grid ---
    grid = expand.MakeGridDH(coeffs, csphase=-1)
    fig_map = plt.figure()
    plt.imshow(grid)

    # ---- compute spectrum ----
    ls = np.arange(lmax + 1)
    pspectrum = spectralanalysis.spectrum(coeffs, unit='per_l')
    pdensity = spectralanalysis.spectrum(coeffs, unit='per_lm')

    # ---- plot spectrum ----
    fig_spectrum, ax = plt.subplots(1, 1)
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_xlabel('degree l')
    ax.grid(True, which='both')

    ax.plot(ls[1:], pspectrum[1:], label='power per degree l')
    ax.plot(ls[1:], pdensity[1:], label='power per degree l and order m')

    ax.legend()

    fig_map.savefig('SHRtopography_mars.png')
    fig_spectrum.savefig('SHRspectrum_mars.png')
    print('mars topography and spectrum saved')
Esempio n. 2
0
def example():
    """
    example that plots the power spectrum of Mars topography data
    """
    # --- input data filename ---
    infile = os.path.join(os.path.dirname(__file__),
                          '../../ExampleDataFiles/MarsTopo719.shape')
    coeffs, lmax = shio.shread(infile)

    # --- plot grid ---
    grid = expand.MakeGridDH(coeffs, csphase=-1)
    fig_map = plt.figure()
    plt.imshow(grid)

    # ---- compute spectrum ----
    ls = np.arange(lmax + 1)
    pspectrum = spectralanalysis.spectrum(coeffs, unit='per_l')
    pdensity = spectralanalysis.spectrum(coeffs, unit='per_lm')

    # ---- plot spectrum ----
    fig_spectrum, ax = plt.subplots(1, 1)
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_xlabel('degree l')
    ax.grid(True, which='both')

    ax.plot(ls[1:], pspectrum[1:], label='power per degree l')
    ax.plot(ls[1:], pdensity[1:], label='power per degree l and order m')

    ax.legend()

    fig_map.savefig('SHRtopography_mars.png')
    fig_spectrum.savefig('SHRspectrum_mars.png')
    print('mars topography and spectrum saved')
Esempio n. 3
0
def TimingAccuracyDHC(sampling=1):
    # ---- input parameters ----
    maxdeg = 2800
    ls = np.arange(maxdeg + 1)
    beta = 1.5
    print('Driscoll-Healy (complex), sampling =', sampling)

    # ---- create mask to filter out m<=l ----
    mask = np.zeros((2, maxdeg + 1, maxdeg + 1), dtype=np.bool)
    mask[0, 0, 0] = True
    for l in ls:
        mask[:, l, :l + 1] = True
    mask[1, :, 0] = False

    # ---- create Gaussian powerlaw coefficients ----
    print('creating {:d} random coefficients'.format(2 * (maxdeg + 1) *
                                                     (maxdeg + 1)))
    np.random.seed(0)
    cilm = np.zeros((2, (maxdeg + 1), (maxdeg + 1)), dtype=np.complex)
    cilm.imag = np.random.normal(loc=0.,
                                 scale=1.,
                                 size=(2, maxdeg + 1, maxdeg + 1))
    cilm.real = np.random.normal(loc=0.,
                                 scale=1.,
                                 size=(2, maxdeg + 1, maxdeg + 1))
    old_power = spectralanalysis.spectrum(cilm)
    new_power = 1. / (1. + ls)**beta  # initialize degrees > 0 to power-law
    cilm[:, :, :] *= np.sqrt(new_power / old_power)[None, :, None]
    cilm[~mask] = 0.

    # ---- time spherical harmonics transform for lmax set to increasing
    # ---- powers of 2
    lmax = 2
    print('lmax    maxerror    rms         tinverse    tforward')
    while lmax <= maxdeg:
        # trim coefficients to lmax
        cilm_trim = cilm[:, :lmax + 1, :lmax + 1]
        mask_trim = mask[:, :lmax + 1, :lmax + 1]

        # synthesis / inverse
        tstart = time.time()
        grid = expand.MakeGridDHC(cilm_trim, sampling=sampling)
        tend = time.time()
        tinverse = tend - tstart

        # analysis / forward
        tstart = time.time()
        cilm2_trim = expand.SHExpandDHC(grid, sampling=sampling)
        tend = time.time()
        tforward = tend - tstart

        # compute error
        err = np.abs(cilm_trim[mask_trim] - cilm2_trim[mask_trim]) / \
            np.abs(cilm_trim[mask_trim])
        maxerr = err.max()
        rmserr = np.mean(err**2)

        print('{:4d}    {:1.2e}    {:1.2e}    {:1.1e}s    {:1.1e}s'.format(
            lmax, maxerr, rmserr, tinverse, tforward))
        lmax = lmax * 2
Esempio n. 4
0
def TimingAccuracyDHC(sampling=1):
    # ---- input parameters ----
    maxdeg = 2800
    ls = np.arange(maxdeg + 1)
    beta = 1.5
    print('Driscoll-Healy (complex), sampling =', sampling)

    # ---- create mask to filter out m<=l ----
    mask = np.zeros((2, maxdeg + 1, maxdeg + 1), dtype=np.bool)
    mask[0, 0, 0] = True
    for l in ls:
        mask[:, l, :l + 1] = True
    mask[1, :, 0] = False

    # ---- create Gaussian powerlaw coefficients ----
    print('creating {:d} random coefficients'.format(2 * (maxdeg + 1) *
                                                     (maxdeg + 1)))
    np.random.seed(0)
    cilm = np.zeros((2, (maxdeg + 1), (maxdeg + 1)), dtype=np.complex)
    cilm.imag = np.random.normal(loc=0., scale=1.,
                                 size=(2, maxdeg + 1, maxdeg + 1))
    cilm.real = np.random.normal(loc=0., scale=1.,
                                 size=(2, maxdeg + 1, maxdeg + 1))
    old_power = spectralanalysis.spectrum(cilm)
    new_power = 1. / (1. + ls)**beta  # initialize degrees > 0 to power-law
    cilm[:, :, :] *= np.sqrt(new_power / old_power)[None, :, None]
    cilm[~mask] = 0.

    # ---- time spherical harmonics transform for lmax set to increasing
    # ---- powers of 2
    lmax = 2
    print('lmax    maxerror    rms         tinverse    tforward')
    while lmax <= maxdeg:
        # trim coefficients to lmax
        cilm_trim = cilm[:, :lmax + 1, :lmax + 1]
        mask_trim = mask[:, :lmax + 1, :lmax + 1]

        # synthesis / inverse
        tstart = time.time()
        grid = expand.MakeGridDHC(cilm_trim, sampling=sampling)
        tend = time.time()
        tinverse = tend - tstart

        # analysis / forward
        tstart = time.time()
        cilm2_trim = expand.SHExpandDHC(grid, sampling=sampling)
        tend = time.time()
        tforward = tend - tstart

        # compute error
        err = np.abs(cilm_trim[mask_trim] - cilm2_trim[mask_trim]) / \
            np.abs(cilm_trim[mask_trim])
        maxerr = err.max()
        rmserr = np.mean(err**2)

        print('{:4d}    {:1.2e}    {:1.2e}    {:1.1e}s    {:1.1e}s'.format(
            lmax, maxerr, rmserr, tinverse, tforward))
        lmax = lmax * 2
Esempio n. 5
0
#plt.plot((1.0/np.pi)*lon,(1.0/np.pi)*lat,'.')
#plt.xlim([-1.0,+1.0])
#plt.ylim([-0.5,+0.5])
#plt.show()

levs = np.logspace(-8, 4, 200)
print levs

xx = np.linspace(-1.0 * np.pi, +1.0 * np.pi, nLon)
yy = np.linspace(-0.5 * np.pi, +0.5 * np.pi, nLat)
XX, YY = np.meshgrid(xx, yy)
#plt.contourf(XX, YY, ke2, 100, locator=ticker.LogLocator())
plt.contourf(XX, YY, ke2, norm=LogNorm(), levels=levs)
plt.colorbar(orientation='horizontal',
             ticks=[1.0e-8, 1.0e-6, 1.0e-4, 1.0e-2, 1.0e+0, 1.0e+2, 1.0e+4])
plt.savefig('kinetic_energy_galewsky_7days.png')
plt.show()

coeffs = SHExpandDH(ke2, sampling=2)
power = spectrum(coeffs, unit='per_l')
nl = coeffs.shape[1] / 2
plt.loglog(np.arange(nl), power[:nl])
#plt.loglog(np.arange(nl-6)+6, 1.0e+7*np.power(np.arange(nl-6)+6,-3.0))
plt.loglog(
    np.arange(nl - 6) + 6, 8.0e+6 * np.power(np.arange(nl - 6) + 6, -3.0))
#plt.loglog([50.0,50.0],[1.0e+5,1.0e-1])
plt.xlabel('$k$')
plt.ylabel('$KE$')
plt.savefig('ke_spectra_galewsky_7days.png')
plt.show()
Esempio n. 6
0
def TimingAccuracyGLQ():
    # ---- input parameters ----
    maxdeg = 2800
    ls = np.arange(maxdeg + 1)
    beta = 1.5
    print('Driscoll-Healy (real)')

    # ---- create mask to filter out m<=l ----
    mask = np.zeros((2, maxdeg + 1, maxdeg + 1), dtype=np.bool)
    mask[0, 0, 0] = True
    for l in ls:
        mask[:, l, :l + 1] = True
    mask[1, :, 0] = False

    # ---- create Gaussian powerlaw coefficients ----
    print('creating {:d} random coefficients'.format(2 * (maxdeg + 1) *
                                                     (maxdeg + 1)))
    cilm = np.random.normal(loc=0., scale=1., size=(2, maxdeg + 1, maxdeg + 1))
    cilm[:, 1:, :] *= np.sqrt((ls[1:]**beta) / (2. * ls[1:] + 1.))[None, :,
                                                                   None]
    old_power = spectralanalysis.spectrum(cilm)
    new_power = 1. / (1. + ls)**beta  # initialize degrees > 0 to power-law
    cilm[:, :, :] *= np.sqrt(new_power / old_power)[None, :, None]
    cilm[~mask] = 0.

    # ---- time spherical harmonics transform for lmax set to increasing
    # ---- powers of 2
    lmax = 2
    print('lmax    maxerror    rms        tprecompute    tinverse    tforward')
    while lmax <= maxdeg:
        # trim coefficients to lmax
        cilm_trim = cilm[:, :lmax + 1, :lmax + 1]
        mask_trim = mask[:, :lmax + 1, :lmax + 1]

        # precompute grid nodes and associated Legendre functions
        tstart = time.time()
        zeros, weights = expand.SHGLQ(lmax)
        tend = time.time()
        tprecompute = tend - tstart

        # synthesis / inverse
        tstart = time.time()
        grid = expand.MakeGridGLQ(cilm_trim, zeros)
        tend = time.time()
        tinverse = tend - tstart

        # analysis / forward
        tstart = time.time()
        cilm2_trim = expand.SHExpandGLQ(grid, weights, zeros)
        tend = time.time()
        tforward = tend - tstart

        # compute error
        err = np.abs(cilm_trim[mask_trim] - cilm2_trim[mask_trim]) / \
            np.abs(cilm_trim[mask_trim])
        maxerr = err.max()
        rmserr = np.mean(err**2)

        print('{:4d}    {:1.2e}    {:1.2e}    {:1.1e}s       {:1.1e}s    '
              '{:1.1e}s'.format(lmax, maxerr, rmserr, tprecompute, tinverse,
                                tforward))

        if maxerr > 100.:
            raise RuntimeError('Tests Failed. Maximum relative error = ',
                               maxerr)

        lmax = lmax * 2
Esempio n. 7
0
def TimingAccuracyGLQ():
    # ---- input parameters ----
    maxdeg = 2800
    ls = np.arange(maxdeg + 1)
    beta = 1.5
    print('Driscoll-Healy (real)')

    # ---- create mask to filter out m<=l ----
    mask = np.zeros((2, maxdeg + 1, maxdeg + 1), dtype=np.bool)
    mask[0, 0, 0] = True
    for l in ls:
        mask[:, l, :l + 1] = True
    mask[1, :, 0] = False

    # ---- create Gaussian powerlaw coefficients ----
    print('creating {:d} random coefficients'.format(2 * (maxdeg + 1) *
                                                     (maxdeg + 1)))
    cilm = np.random.normal(loc=0., scale=1., size=(2, maxdeg + 1, maxdeg + 1))
    cilm[:, 1:, :] *= np.sqrt((ls[1:]**beta) /
                              (2. * ls[1:] + 1.))[None, :, None]
    old_power = spectralanalysis.spectrum(cilm)
    new_power = 1. / (1. + ls)**beta  # initialize degrees > 0 to power-law
    cilm[:, :, :] *= np.sqrt(new_power / old_power)[None, :, None]
    cilm[~mask] = 0.

    # ---- time spherical harmonics transform for lmax set to increasing
    # ---- powers of 2
    lmax = 2
    print('lmax    maxerror    rms        tprecompute    tinverse    tforward')
    while lmax <= maxdeg:
        # trim coefficients to lmax
        cilm_trim = cilm[:, :lmax + 1, :lmax + 1]
        mask_trim = mask[:, :lmax + 1, :lmax + 1]

        # precompute grid nodes and associated Legendre functions
        tstart = time.time()
        zeros, weights = expand.SHGLQ(lmax)
        tend = time.time()
        tprecompute = tend - tstart

        # synthesis / inverse
        tstart = time.time()
        grid = expand.MakeGridGLQ(cilm_trim, zeros)
        tend = time.time()
        tinverse = tend - tstart

        # analysis / forward
        tstart = time.time()
        cilm2_trim = expand.SHExpandGLQ(grid, weights, zeros)
        tend = time.time()
        tforward = tend - tstart

        # compute error
        err = np.abs(cilm_trim[mask_trim] - cilm2_trim[mask_trim]) / \
            np.abs(cilm_trim[mask_trim])
        maxerr = err.max()
        rmserr = np.mean(err**2)

        print('{:4d}    {:1.2e}    {:1.2e}    {:1.1e}s       {:1.1e}s    '
              '{:1.1e}s'.format(lmax, maxerr, rmserr, tprecompute, tinverse,
                                tforward))
        lmax = lmax * 2