Esempio n. 1
0
def get_reciprocal_space_pixel_position(pixel_center, wave_vector):
    """
    Obtain the coordinate of each pixel in the reciprocal space.
    :param pixel_center: The coordinate of  the pixel in real space.
    :param wave_vector: The wavevector.
    :return: The array containing the pixel coordinates.
    """
    wave_vector = xp.asarray(wave_vector)
    # reshape the array into a 1d position array
    pixel_center_1d = reshape_pixels_position_arrays_to_1d(pixel_center)

    # Calculate the reciprocal position of each pixel
    wave_vector_norm = xp.sqrt(xp.sum(xp.square(wave_vector)))
    wave_vector_direction = wave_vector / wave_vector_norm

    pixel_center_norm = xp.sqrt(xp.sum(xp.square(pixel_center_1d), axis=1))
    pixel_center_direction = pixel_center_1d / pixel_center_norm[:, np.newaxis]

    pixel_position_reciprocal_1d = wave_vector_norm * (pixel_center_direction -
                                                       wave_vector_direction)

    # restore the pixels shape
    pixel_position_reciprocal = xp.reshape(pixel_position_reciprocal_1d,
                                           pixel_center.shape)

    return pixel_position_reciprocal
Esempio n. 2
0
def get_reciprocal_position_and_correction(pixel_position, pixel_area,
                                           wave_vector, polarization,
                                           orientation):
    """
    Calculate the pixel positions in reciprocal space and all the related corrections.

    :param pixel_position: The position of the pixel in real space.
    :param wave_vector: The wavevector.
    :param polarization: The polarization vector.
    :param orientation: The normal direction of the detector.
    :param pixel_area: The pixel area for each pixel. In pixel stack format.
    :return: pixel_position_reciprocal, pixel_position_reciprocal_norm, polarization_correction,
            geometry_correction
    """
    # Calculate the position and distance in reciprocal space
    pixel_position_reciprocal = get_reciprocal_space_pixel_position(
        pixel_center=pixel_position, wave_vector=wave_vector)
    pixel_position_reciprocal_norm = xp.sqrt(
        xp.sum(xp.square(pixel_position_reciprocal), axis=-1))

    # Calculate the corrections.
    polarization_correction = get_polarization_correction(
        pixel_center=pixel_position, polarization=polarization)

    # Because the pixel area in this function is measured in m^2,
    # therefore,the distance has to be in m
    solid_angle_array = solid_angle(pixel_center=pixel_position,
                                    pixel_area=pixel_area,
                                    orientation=orientation)

    return (pixel_position_reciprocal, pixel_position_reciprocal_norm,
            polarization_correction, solid_angle_array)
Esempio n. 3
0
def extract_slice(local_index, local_weight, volume):
    """
    Take one slice from the volume given the index and weight map.

    :param local_index: The index containing values to take.
    :param local_weight: The weight for each index.
    :param volume: The volume to slice from.
    :return: The slice.
    """
    local_index = xp.asarray(local_index)
    local_weight = xp.asarray(local_weight)
    volume = xp.asarray(volume)

    # Convert the index of the 3D diffraction volume to 1D
    pattern_shape = local_index.shape[:3]
    pixel_num = int(np.prod(pattern_shape))

    volume_num_1d = volume.shape[0]
    convertion_factor = xp.array(
        [volume_num_1d * volume_num_1d, volume_num_1d, 1], dtype=np.int64)

    index_2d = xp.reshape(local_index, [pixel_num, 8, 3])
    index_2d = xp.matmul(index_2d, convertion_factor)

    volume_1d = xp.reshape(volume, volume_num_1d**3)
    weight_2d = xp.reshape(local_weight, [pixel_num, 8])

    # Expand the data to merge
    data_to_merge = volume_1d[index_2d]

    # Merge the data
    data_merged = xp.sum(xp.multiply(weight_2d, data_to_merge), axis=-1)

    data = xp.reshape(data_merged, pattern_shape)
    return data
Esempio n. 4
0
def solid_angle(pixel_center, pixel_area, orientation):
    """
    Calculate the solid angle for each pixel.

    :param pixel_center: The position of each pixel in real space. In pixel stack format.
    :param orientation: The orientation of the detector.
    :param pixel_area: The pixel area for each pixel. In pixel stack format.
    :return: Solid angle of each pixel.
    """
    orientation = xp.asarray(orientation)

    # Use 1D format
    pixel_center_1d = reshape_pixels_position_arrays_to_1d(pixel_center)
    pixel_center_norm_1d = xp.sqrt(xp.sum(xp.square(pixel_center_1d), axis=-1))
    pixel_area_1d = xp.reshape(pixel_area, np.prod(pixel_area.shape))

    # Calculate the direction of each pixel.
    pixel_center_direction_1d = pixel_center_1d / pixel_center_norm_1d[:, xp.
                                                                       newaxis]

    # Normalize the orientation vector
    orientation_norm = xp.sqrt(xp.sum(xp.square(orientation)))
    orientation_normalized = orientation / orientation_norm

    # The correction induced by projection which is a factor of cosine.
    cosine_1d = xp.abs(
        xp.dot(pixel_center_direction_1d, orientation_normalized))

    # Calculate the solid angle ignoring the projection
    solid_angle_1d = xp.divide(pixel_area_1d, xp.square(pixel_center_norm_1d))
    solid_angle_1d = xp.multiply(cosine_1d, solid_angle_1d)

    # Restore the pixel stack format
    solid_angle_stack = xp.reshape(solid_angle_1d, pixel_area.shape)

    return solid_angle_stack
Esempio n. 5
0
    def preferred_voxel_length(self, wave_vector):
        """
        If one want to put the diffraction pattern into 3D reciprocal space, then one needs to
        select a proper voxel length for the reciprocal space. This function gives a reasonable
        estimation of this length

        :param wave_vector: The wavevector of in this experiment.
        :return: voxel_length.
        """
        # Notice that this voxel length has nothing to do with the voxel length
        # utilized in dragonfly.
        voxel_length = xp.sqrt(xp.sum(xp.square(wave_vector)))
        voxel_length /= self.distance * xp.min(self.pixel_width, self.pixel_height)

        return voxel_length
Esempio n. 6
0
def calculate_diffraction_pattern_gpu(reciprocal_space,
                                      particle,
                                      return_type='intensity'):
    """
    Calculate the diffraction field of the specified reciprocal space.

    :param reciprocal_space: The reciprocal space over which to calculate the diffraction field.
    :param particle: The particle object to calculate the diffraction field.
    :param return_type: 'intensity' to return the intensity field. 'complex_field' to return the full diffraction field.
    :return: The diffraction field.
    """
    """This function can be used to calculate the diffraction field for
    arbitrary reciprocal space """
    # convert the reciprocal space into a 1d series.
    shape = reciprocal_space.shape
    pixel_number = int(np.prod(shape[:-1]))
    reciprocal_space_1d = xp.reshape(reciprocal_space, [pixel_number, 3])
    reciprocal_norm_1d = xp.sqrt(
        xp.sum(xp.square(reciprocal_space_1d), axis=-1))

    # Calculate atom form factor for the reciprocal space
    form_factor = pd.calculate_atomic_factor(
        particle=particle,
        q_space=reciprocal_norm_1d * (1e-10 / 2.),  # For unit compatibility
        pixel_num=pixel_number)

    # Get atom position
    atom_position = np.ascontiguousarray(particle.atom_pos[:])
    atom_type_num = len(particle.split_idx) - 1

    # create
    pattern_cos = xp.zeros(pixel_number, dtype=xp.float64)
    pattern_sin = xp.zeros(pixel_number, dtype=xp.float64)

    # atom_number = atom_position.shape[0]
    split_index = xp.array(particle.split_idx)

    cuda_split_index = cuda.to_device(split_index)
    cuda_atom_position = cuda.to_device(atom_position)
    cuda_reciprocal_position = cuda.to_device(reciprocal_space_1d)
    cuda_form_factor = cuda.to_device(form_factor)

    # Calculate the pattern
    calculate_pattern_gpu_back_engine[(pixel_number + 511) // 512,
                                      512](cuda_form_factor,
                                           cuda_reciprocal_position,
                                           cuda_atom_position, pattern_cos,
                                           pattern_sin, atom_type_num,
                                           cuda_split_index, pixel_number)

    # Add the hydration layer
    if particle.mesh is not None:
        water_position = np.ascontiguousarray(
            particle.mesh[particle.solvent_mask, :])
        water_num = np.sum(particle.solvent_mask)
        water_prefactor = particle.solvent_mean_electron_density * particle.mesh_voxel_size**3

        cuda_water_position = cuda.to_device(water_position)

        calculate_solvent_pattern_gpu_back_engine[(pixel_number + 511) // 512,
                                                  512](
                                                      cuda_reciprocal_position,
                                                      cuda_water_position,
                                                      pattern_cos, pattern_sin,
                                                      water_prefactor,
                                                      water_num, pixel_number)

    if return_type == "intensity":
        pattern = np.reshape(np.square(np.abs(pattern_cos + 1j * pattern_sin)),
                             shape[:-1])
        return xp.asarray(pattern)
    elif return_type == "complex_field":
        pattern = np.reshape(pattern_cos + 1j * pattern_sin, shape[:-1])
        return xp.asarray(pattern)
    else:
        print(
            "Please set the parameter return_type = 'intensity' or 'complex_field'"
        )
        print("This time, this program return the complex field.")
        pattern = np.reshape(pattern_cos + 1j * pattern_sin, shape[:-1])
        return xp.asarray(pattern)