Esempio n. 1
0
def test_multi_run():
    # NEB
    geoms = AnaPot().get_path(10)
    cos = NEB(geoms)
    neb_kwargs = {
        "dump": True,
        "h5_group_name": "neb",
    }
    neb_opt = SteepestDescent(cos, **neb_kwargs)
    neb_opt.run()

    # GrowingString
    geoms = AnaPot().get_path(10)
    gsm = GrowingString(geoms, calc_getter=AnaPot, perp_thresh=0.25)
    gsm_kwargs = {
        "dump": True,
        "h5_group_name": "gsm",
        "stop_in_when_full": 0,
    }
    gsm_opt = StringOptimizer(gsm, **gsm_kwargs)
    gsm_opt.run()
    # calc = geoms[0].calculator
    # calc.anim_opt(opt, show=True)

    # Simple Optimization
    geom = AnaPot().get_path(10)[5]
    opt_kwargs = {
        "dump": True,
        "h5_group_name": "opt",
    }
    opt = RFOptimizer(geom, **opt_kwargs)
    opt.run()
Esempio n. 2
0
def test_growing_string_climbing(gs_kwargs_, opt_ref_cycle, tsopt_ref_cycle):
    calc = AnaPot()
    geoms = calc.get_path(num=2)
    gs_kwargs = {
        "perp_thresh": 0.5,
        "reparam_check": "rms",
    }
    gs_kwargs.update(gs_kwargs_)
    cos = GrowingString(geoms, lambda: AnaPot(), **gs_kwargs)

    opt_kwargs = {
        "gamma_mult": True,
        "max_step": 0.04,
        "rms_force": 0.1,
        "rms_force_only": True,
    }
    opt = StringOptimizer(cos, **opt_kwargs)
    opt.run()

    assert opt.is_converged
    assert opt.cur_cycle == opt_ref_cycle

    # calc = AnaPot()
    # calc.anim_opt(opt, show=True)

    hei_geom = cos.images[cos.get_hei_index()]
    tsopt = RSIRFOptimizer(hei_geom, thresh="gau_vtight")
    tsopt.run()

    assert tsopt.is_converged
    assert tsopt.cur_cycle == tsopt_ref_cycle
Esempio n. 3
0
def test_neb_springs(neb_kwargs, ref_cycle):
    calc = AnaPot()
    geoms = calc.get_path(15)
    neb = NEB(geoms, **neb_kwargs)
    opt = SteepestDescent(neb)
    opt.run()

    # calc.anim_opt(opt, show=True)

    assert (opt.is_converged)
    assert (opt.cur_cycle == ref_cycle)
Esempio n. 4
0
def test_freeend_anapot():
    calc = AnaPot()
    geoms = calc.get_path(15)
    geoms = geoms[3:11]

    fe_neb = FreeEndNEB(geoms)
    opt = SteepestDescent(fe_neb)
    opt.run()

    # calc.anim_opt(opt, show=True)

    assert opt.is_converged
    assert opt.cur_cycle == 31
Esempio n. 5
0
def test_anapot_aneb():
    calc = AnaPot()
    all_geoms = calc.get_path(10)
    aneb = AdaptiveNEB(all_geoms)

    opt_kwargs = {
        "rms_force": 3e-3,
    }
    opt = ConjugateGradient(aneb, **opt_kwargs)
    opt.run()

    # ap = calc.anim_opt(opt, show=True)

    assert opt.is_converged
    assert opt.cur_cycle == 21
Esempio n. 6
0
def animate(opt):
    xlim = (-2, 2.5)
    ylim = (0, 5)
    levels = (-3, 4, 80)
    ap = AnimPlot(AnaPot(), opt, xlim=xlim, ylim=ylim, levels=levels)
    ap.animate()
    return ap
Esempio n. 7
0
def get_geoms(coords=None):
    if coords is None:
        # left = np.array((0.188646, 1.45698, 0))
        # right = np.array((0.950829, 1.54153, 0))
        left = np.array((0.354902, 1.34229, 0))
        right = np.array((0.881002, 1.71074, 0))
        right = np.array((0.77, 1.97, 0))

        # Very close
        # left = np.array((0.531642, 1.41899, 0))
        # right = np.array((0.702108, 1.57077, 0))
        coords = (right, left)

        # near_ts = np.array((0.553726, 1.45458, 0))
        # coords = (near_ts, )

        # left_far = np.array((-0.455116, 0.926978, 0))
        # right_far = np.array((-0.185653, 1.02486, 0))
        # coords = (left_far, right_far)

    atoms = ("H")
    geoms = [Geometry(atoms, c) for c in coords]
    for geom in geoms:
        geom.set_calculator(AnaPot())
    return geoms
Esempio n. 8
0
def test_anapot_growingstring_opt():
    coords = (
        (-1.05274, 1.02776, 0),
        (1.94101, 3.85427, 0),
    )
    calc_getter = AnaPot
    eps = .05
    damp = .05
    images = get_geoms(coords, calc_getter)
    gs_kwargs = {
        "max_nodes": 10,
        "perp_thresh": 0.5,
        # "perp_thresh": 1,
    }
    gs = GrowingString(images, calc_getter, reparam_every=1)
    # from pysisyphus.optimizers.QuickMin import QuickMin
    # opt = QuickMin(gs)
    # self.coords = [c.reshape(-1, 3) for c in self.gs.coords_list]
    # self.tangents = self.gs.tangent_list
    # self.perp_forces = self.gs.perp_force_list

    from pysisyphus.optimizers.SteepestDescent import SteepestDescent
    # opt = SteepestDescent(gs, alpha=0.05, bt_disable=True, max_cycles=175)
    opt = SteepestDescent(gs, alpha=0.05, bt_disable=True, max_cycles=70)
    opt.run()
    xlim = (-2, 2.5)
    ylim = (0, 5)
    levels = (-3, 4, 80)
    ap = AnimPlot(AnaPot(), opt, xlim=xlim, ylim=ylim, levels=levels)
    ap.animate()
Esempio n. 9
0
def test_optimizers(opt_cls, opt_kwargs_, ref_cycle):
    geom = AnaPot.get_geom((0.667, 1.609, 0.))
    ref_coords = np.array((1.941, 3.8543, 0.))

    opt_kwargs = {
        "thresh": "gau_tight",
        "dump": False,
        "overachieve_factor": 2.,
    }
    opt_kwargs.update(opt_kwargs_)
    opt = opt_cls(geom, **opt_kwargs)
    opt.run()

    # import matplotlib.pyplot as plt
    # calc = geom.calculator
    # calc.plot()
    # coords = np.array(opt.coords)
    # ax = calc.ax
    # ax.plot(*coords.T[:2], "ro-")
    # plt.show()

    assert opt.is_converged
    assert opt.cur_cycle == ref_cycle

    diff = ref_coords - geom.coords
    diff_norm = np.linalg.norm(diff)
    print(f"@\tnorm(diff)={diff_norm:.8f}")
    assert diff_norm < 6e-5
Esempio n. 10
0
def test_sqnm():
    # geom = AnaPot.get_geom((0, 4, 0))
    geom = AnaPot.get_geom((-0.8, 1.73, 0))

    opt_kwargs = {
        "max_cycles": 15,
        "eps": 1e-4,
        "E_thresh": 1e-4,
        "alpha": 0.5,
        "hist_max": 10,
        # "thresh": "gau_tight",
        "trust_radius": 0.1,
        # "bio": False,
        "dump": True,
    }
    opt = StabilizedQNMethod(geom, **opt_kwargs)
    # opt = SQNM3(geom, **opt_kwargs)
    opt.run()
    c = np.array(opt.coords)
    calc = geom.calculator
    calc.plot()
    ax = calc.ax
    ax.plot(c[:, 0], c[:, 1], "o-")

    plt.show()
Esempio n. 11
0
def test_dimer(rotation_method, ref_cycle):
    coords = (-0.2, 1.1, 0)
    geom = Geometry(("X", ), coords)
    N_raw = np.array((0.83, 0.27, 0.))

    # New implementation
    dimer_kwargs = {
        "rotation_method": rotation_method,
        "calculator": AnaPot(),
        "N_raw": N_raw,
        "rotation_remove_trans": False,
    }
    dimer = Dimer(**dimer_kwargs)
    geom.set_calculator(dimer)

    opt_kwargs = {
        "precon": False,
        "line_search": None,
        "max_step_element": 0.25,
        "thresh": "gau_tight",
        "max_cycles": 15,
    }
    opt = PreconLBFGS(geom, **opt_kwargs)
    opt.run()
    # AnaPot().plot_opt(opt)

    assert opt.is_converged
    assert opt.cur_cycle == ref_cycle
    assert geom.energy == pytest.approx(2.80910484)
Esempio n. 12
0
def test_dump_neb():
    # NEB
    geoms = AnaPot().get_path(10)
    cos = NEB(geoms)
    opt_kwargs = {
        "dump": True,
        # "rms_force": 1.0,
        "h5_group_name": "neb",
    }
    opt = SteepestDescent(cos, **opt_kwargs)
    # opt = SteepestDescent(geoms[7], **opt_kwargs)
    opt.run()

    # GrowingString
    geoms = AnaPot().get_path(10)
    gsm = GrowingString(geoms, calc_getter=AnaPot, perp_thresh=0.25)
    opt_kwargs = {
        "dump": True,
        "h5_group_name": "gsm",
        "gamma": 10.,
        "stop_in_when_full": 0,
    }
    opt = StringOptimizer(gsm, **opt_kwargs)
    opt.run()
    calc = geoms[0].calculator
    # calc.anim_opt(opt, show=True)

    # # Simple Optimization
    # geom = AnaPot().get_path(10)[5]
    # opt_kwargs = {
    # "dump": True,
    # "h5_group_name": "opt",
    # }
    # opt = RFOptimizer(geom, **opt_kwargs)
    # opt.run()
    return

    hei_coords, *_ = cos.get_splined_hei()
    ts_geom = geoms[0].copy()
    ts_geom.coords = hei_coords
    ts_geom.set_calculator(AnaPot())
    ts_opt_kwargs = {
        # "dump": True,
        "thresh": "gau_tight",
    }
    ts_opt = RSIRFOptimizer(ts_geom, **ts_opt_kwargs)
    ts_opt.run()
Esempio n. 13
0
def run_dimer():
    x0 = (-0.5767, 1.6810, 0)
    geom0 = AnaPot.get_geom(x0)

    N = np.array((-0.9, 0.43, 0))
    N /= np.linalg.norm(N)
    R = 0.125
    coords = dimer_method(geom0, N, R, AnaPot, max_step=0.6, max_cycles=5)

    coords = np.array(coords)
    pot = AnaPot()
    pot.plot()
    ax = pot.ax
    for i, rot_cycle in enumerate(coords):
        ax.plot(*rot_cycle.T[:2], "o-", label=f"Cycle {i:02d}")
    ax.legend()
    plt.show()
Esempio n. 14
0
def run_lanczos():
    x0 = (-0.5767, 1.6810, 0)
    geom0 = AnaPot.get_geom(x0)
    w_min, v_min = lanczos(geom0, dx=1e-5)
    H = geom0.hessian
    w, v = np.linalg.eigh(H)
    w_min_ref = w[0]
    print(f"w_min_ref={w_min_ref:.6f}")
Esempio n. 15
0
def test_opt_dump():
    geom = AnaPot().get_geom((1, 1, 0.))
    calc = geom.calculator
    opt_kwargs = {
        "dump": True,
    }
    opt = RFOptimizer(geom, **opt_kwargs)
    opt.run()

    calc.plot_opt(opt)  #, show=True)
Esempio n. 16
0
def test_conjugate_gradient():
    calc = AnaPot()
    geoms = calc.get_path(2)
    gs_kwargs = {
        "perp_thresh": 0.5,
        "reparam_check": "rms",
    }
    gs = GrowingString(geoms, lambda: AnaPot(), **gs_kwargs)

    opt_kwargs = {
        "keep_last": 0,
        "rms_force": 0.02,
        "rms_force_only": True,
    }
    opt = StringOptimizer(gs, **opt_kwargs)
    opt.run()

    assert opt.is_converged
    assert opt.cur_cycle == 23
Esempio n. 17
0
def test_anapot_lanczos():
    geom = AnaPot.get_geom((-0.5767, 1.6810, 0.))
    guess = (0.4, 0.3, 0.0)
    w_min, v_min = geom_lanczos(geom, guess=guess, dx=1e-5, dl=1e-5, logger=logger)

    H = geom.hessian
    w, v = np.linalg.eigh(H)
    w_ref = w[0]
    v_ref = v[:,0]
    assert w_min == pytest.approx(w_ref, abs=1e-4)
    assert any([np.allclose(v, v_ref, atol=5e-2) for v in (v_min, -v_min)])
Esempio n. 18
0
def ase_md_playground():
    geom = AnaPot.get_geom((0.52, 1.80, 0), atoms=("H", ))
    atoms = geom.as_ase_atoms()
    # ase_calc = FakeASE(geom.calculator)
    # from ase.optimize import BFGS
    # dyn = BFGS(atoms)
    # dyn.run(fmax=0.05)

    import ase
    from ase import units
    from ase.io.trajectory import Trajectory
    from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
    from ase.md.verlet import VelocityVerlet

    MaxwellBoltzmannDistribution(atoms, 300 * units.kB)
    momenta = atoms.get_momenta()
    momenta[0, 2] = 0.
    # Zero 3rd dimension
    atoms.set_momenta(momenta)

    dyn = VelocityVerlet(atoms, .005 * units.fs)  # 5 fs time step.


    def printenergy(a):
        """Function to print the potential, kinetic and total energy"""
        epot = a.get_potential_energy() / len(a)
        ekin = a.get_kinetic_energy() / len(a)
        print('Energy per atom: Epot = %.3feV  Ekin = %.3feV (T=%3.0fK)  '
              'Etot = %.3feV' % (epot, ekin, ekin / (1.5 * units.kB), epot + ekin))

    # Now run the dynamics
    printenergy(atoms)
    traj_fn = 'asemd.traj'
    traj = Trajectory(traj_fn, 'w', atoms)
    dyn.attach(traj.write, interval=5)
    # dyn.attach(bumms().bimms, interval=1)

    dyn.run(10000)
    printenergy(atoms)
    traj.close()

    traj = ase.io.read(traj_fn+"@:")#, "r")
    pos = [a.get_positions() for a in traj]
    from pysisyphus.constants import BOHR2ANG
    pos = np.array(pos) / BOHR2ANG

    calc = geom.calculator
    calc.plot()

    ax = calc.ax
    ax.plot(*pos[:,0,:2].T)

    plt.show()
Esempio n. 19
0
def test_tshessian_opts(opt_cls, ref_cur_cycle):
    geom = AnaPot.get_geom((-0.6, 2.2, 0.))

    opt_kwargs = {
        "trust_radius": 0.2,
        "dump": False,
    }
    opt = opt_cls(geom, **opt_kwargs)
    opt.run()

    assert opt.is_converged
    assert opt.cur_cycle == ref_cur_cycle
Esempio n. 20
0
def test_anapot_cbm_rot():
    pot = AnaPot()
    geoms = (pot.get_geom((0.44, 1.54, 0)), )
    N_init = (-0.2, 1, 0)
    calc_getter = AnaPot
    dimer_kwargs = {
        "ana_2dpot": True,
        "restrict_step": "max",
        "angle_tol": 0.5,
        "f_thresh": 1e-4,
        "rot_opt": "lbfgs",
        "trans_opt": "lbfgs",
        "trans_memory": 5,
        "f_tran_mod": False,
        "N_init": N_init,
        "rot_f_thresh": 1e-2,
        # "multiple_translations": True,
    }
    result = dimer_method(geoms, calc_getter, **dimer_kwargs)
    true_ts = (0.61173, 1.49297, 0.)
    # plot_dimer_cycles(result.dimer_cycles, pot=AnaPot(), true_ts=true_ts[:2])
    return result
Esempio n. 21
0
def test_anapot_irc(irc_cls, mod_kwargs, ref):
    geom = AnaPot().get_geom((0.61173, 1.49297, 0.))

    kwargs = {
        "step_length": 0.1,
        "rms_grad_thresh": 1e-2,
    }
    kwargs.update(**mod_kwargs)

    irc = irc_cls(geom, **kwargs)
    irc.run()

    # geom.calculator.plot_irc(irc, show=True)
    assert_anapot_irc(irc)
Esempio n. 22
0
def run_cos_opt(geoms, between, calc_cls, cos_cls, cos_kwargs, opt_cls,
                opt_kwargs):
    interpol = Interpolator(geoms, between=between)
    images = interpol.interpolate_all()

    for image in images:
        image.set_calculator(AnaPot())

    cos = cos_cls(images, **cos_kwargs)

    opt = opt_cls(cos, **opt_kwargs)
    opt.run()

    return opt
Esempio n. 23
0
def test_anapot_irc(irc_cls, mod_kwargs, ref):
    geom = AnaPot().get_geom((0.61173, 1.49297, 0.))

    kwargs = {
        "step_length": 0.1,
        "rms_grad_thresh": 1e-2,
    }
    kwargs.update(**mod_kwargs)

    irc = irc_cls(geom, **kwargs)
    irc.run()

    # plot_irc(irc, irc.__class__.__name__)
    assert_anapot_irc(irc)
Esempio n. 24
0
def test_anapot_growing_string(keep_last, ref_cycle):
    initial = AnaPot.get_geom((-1.05274, 1.02776, 0))
    final = AnaPot.get_geom((1.94101, 3.85427, 0))
    geoms = (initial, final)
    gs_kwargs = {
        "perp_thresh": 0.5,
        "reparam_check": "rms",
    }
    gs = GrowingString(geoms, lambda: AnaPot(), **gs_kwargs)

    opt_kwargs = {
        # "stop_in_when_full": 3,
        "stop_in_when_full": keep_last,
        "keep_last": keep_last,
    }
    opt = StringOptimizer(gs, **opt_kwargs)
    opt.run()

    # calc = AnaPot()
    # calc.anim_opt(opt, show=True)

    assert opt.is_converged
    assert opt.cur_cycle == ref_cycle
Esempio n. 25
0
def test_climb_lanczos():
    calc = AnaPot()
    geoms = calc.get_path(2)
    gs_kwargs = {
        "perp_thresh": 0.5,
        "reparam_check": "rms",
        "climb": True,
        "climb_rms": 0.2,
        "climb_lanczos": True,
    }
    gs = GrowingString(geoms, lambda: AnaPot(), **gs_kwargs)

    opt_kwargs = {
        "keep_last": 0,
        "rms_force": 0.02,
        "rms_force_only": True,
    }
    opt = StringOptimizer(gs, **opt_kwargs)
    opt.run()

    # calc.anim_opt(opt, show=True)

    assert opt.is_converged
    assert opt.cur_cycle == 23
Esempio n. 26
0
def run_opt(line_search=False, hessian_recalc=None):
    geom = AnaPot.get_geom((0.667, 1.609, 0.))

    rfo_kwargs = {
        "trust_radius": 0.75,
        "thresh": "gau_tight",
        "hessian_recalc": hessian_recalc,
        "line_search": line_search,
        # "hessian_init": "calc",
    }
    rfo = RFOptimizer(geom, **rfo_kwargs)
    rfo.run()
    conv = rfo.is_converged
    cycs = rfo.cur_cycle
    return (conv, cycs)
Esempio n. 27
0
def run_dimer():
    x0 = (-0.5767, 1.6810, 0)
    geom0 = AnaPot.get_geom(x0)

    N = np.array((-0.9, 0.43, 0))
    N /= np.linalg.norm(N)
    R = 0.125

    geom1, geom2 = get_dimer_ends(geom0, N, R, AnaPot)
    coords = list()
    for i in range(35):
        f0 = geom0.forces
        norm_f0 = np.linalg.norm(f0)
        print(f"{i:0d} {norm_f0:.6f}")
        if norm_f0 < 1e-3:
            print("Converged!")
            break
        # Rotation
        rot_result = rotate_dimer(geom0, geom1, geom2, N, R)
        geom1, geom2, N, C, _ = rot_result
        # Translation
        trans_result = translate_dimer(geom0, N, C)
        update_dimer_ends(geom0, geom1, geom2, N, R)
        # Backup for plotting
        cs = (geom1.coords, geom0.coords, geom2.coords)
        coords.append(cs)

    # geom0.calculator.plot_eigenvalue_structure(grid=100)
    coords = np.array(coords)
    pot = AnaPot()
    pot.plot()
    ax = pot.ax
    for i, rot_cycle in enumerate(coords):
        ax.plot(*rot_cycle.T[:2], "o-", label=f"Cycle {i:02d}")
    ax.legend()
    plt.show()
Esempio n. 28
0
def test_eulerpc_scipy(scipy_method):
    geom = AnaPot().get_geom((0.61173, 1.49297, 0.))

    kwargs = {
        "step_length": 0.2,
        "rms_grad_thresh": 1e-2,
        "corr_func": "scipy",
        "scipy_method": scipy_method,
    }

    irc = EulerPC(geom, **kwargs)
    irc.run()

    # plot_irc(irc, irc.__class__.__name__)
    assert_anapot_irc(irc)
Esempio n. 29
0
def test_add_gaussian():
    geom = AnaPot.get_geom((-0.2, 1.1, 0))
    N_raw = np.array((0.3, 0.7, 0.))

    calc = geom.calculator
    dimer_kwargs = {
        "calculator": calc,
        "N_raw": N_raw,
    }
    dimer = Dimer(**dimer_kwargs)
    geom.set_calculator(dimer)

    g0 = dimer.add_gaussian(geom.atoms, geom.coords, dimer.N)

    assert g0.height == pytest.approx(0.1708984)
Esempio n. 30
0
def test_imk(step_length):
    geom = AnaPot().get_geom((0.61173, 1.49297, 0.))

    irc_kwargs = {
        "step_length": step_length,
        "rms_grad_thresh": 1e-2,
        "corr_first": True,
        "corr_first_energy": True,
        "corr_bisec_size": 0.0025,
        "corr_bisec_energy": True,
    }

    irc = IMKMod(geom, **irc_kwargs)
    irc.run()

    # plot_irc(irc, irc.__class__.__name__)
    assert_anapot_irc(irc)