Esempio n. 1
0
def tmp(geom, mode_ind, nu_thresh=-5.):
    org_coords = geom.coords.copy()
    hessian = geom.hessian
    mw_hess = geom.mw_hessian
    start_result = do_analysis(geom, nu_thresh)

    print(f"Distorting along mode #{mode_ind}")
    mode = start_result.v[:, mode_ind]

    # lengths = np.linspace(-2, 2, 41)
    lengths = np.linspace(-1.5, 1.5, 31)
    print(lengths)
    coords_list = list()
    M = np.sqrt(geom.masses_rep)
    results = list()
    mw_coords = geom.mw_coords.copy()
    for l in lengths:
        print(f"l={l:02f}")
        new_coords = (mw_coords + l * mode) / M
        geom.coords = new_coords
        # res = do_analysis(geom)
        # sys.stdout.flush()
        # results.append(res)

        coords_list.append(new_coords)
    coords_to_trj("displaced.trj", geom.atoms, coords_list)
    # with open("res", "wb") as handle: cloudpickle.dump(results, handle)
    with open("res", "rb") as handle:
        results = cloudpickle.load(handle)

    energies = np.array([r.energy for r in results])
    energies -= energies.min()
    energies *= 2625.50
    grad_norms = [np.linalg.norm(r.gradient) for r in results]
    neg_nus = np.array([r.nus[:2] for r in results])

    fig, (ax, ax2, ax3) = plt.subplots(nrows=3, sharex=True)
    ax.plot(lengths, energies, "o--")
    ax.set_title("Energies")
    ax.set_ylabel("$\Delta$E / kJ mol⁻¹")
    ax2.plot(lengths, grad_norms, "o--")
    ax2.set_ylabel("Hartree Bohr⁻¹")
    ax2.set_title("norm(gradient)")

    width = .025
    for i, modes in enumerate(neg_nus.T):
        ax3.bar(lengths + i * width, modes, width=width)
    ax3.set_xlabel("l")
    ax3.set_ylabel(r"$\nu$ / cm⁻¹")

    plt.tight_layout()
    plt.show()
    fig.savefig("imgkill.pdf")
Esempio n. 2
0
def test_rattle_tip3p(this_dir):
    geom = geom_loader(this_dir / "output_10.xyz")
    # geom = geom_loader(this_dir / "output_2.xyz")
    # geom.jmol()

    T = 298.15
    calc = TIP3P()
    potentials = [
        {
            "type": "logfermi",
            "beta": 6,
            "T": T,
            "radius": 10,
        },
    ]
    ext_calc = ExternalPotential(calc, potentials=potentials)
    geom.set_calculator(ext_calc)

    constraints = list(
        it.chain(
            *[get_water_constraints(i) for i in range(len(geom.atoms) // 3)]))

    seed = 20200626
    v0 = get_mb_velocities_for_geom(geom, T, seed=seed).flatten()

    md_kwargs = {
        "v0": v0,
        # "steps": 100,
        # "dt": 1,
        "steps": 250,
        "dt": 1.5,
        # "steps": 500,
        # "dt": 0.25,
        "constraints": constraints,
        "constraint_kwargs": {
            # "remove_com_v": False,
        },
        # "thermostat": "csvr",
    }

    # import pdb; pdb.set_trace()
    md_result = md(geom, **md_kwargs)

    from pysisyphus.xyzloader import coords_to_trj
    coords = md_result.coords
    trj_fn = "md.trj"
    atoms = geom.atoms
    coords_to_trj(trj_fn, atoms, coords)
Esempio n. 3
0
def test_mb_velocities():
    geom = geom_loader("lib:h2o.xyz")
    geom.set_calculator(PySCF(basis="sto3g"))

    # Preoptimization
    opt = RFOptimizer(geom, thresh="gau_tight")
    opt.run()
    print()

    T = 298.15
    seed = 20182503
    v0 = get_mb_velocities_for_geom(geom, T, seed=seed).flatten()
    steps = 100
    dt = 0.5
    res = md(geom, v0, steps, dt)
    assert dt * steps / 1000 == pytest.approx(res.t)

    # import pdb; pdb.set_trace()
    from pysisyphus.xyzloader import coords_to_trj
    coords = res.coords
    trj_fn = "md.trj"
    atoms = geom.atoms
    coords_to_trj(trj_fn, atoms, coords)
Esempio n. 4
0
def test_freq_distort():
    geom = geom_from_xyz_file("final_geometry.xyz")

    print(geom)
    # calc = ORCA("")
    # print(calc)
    # cwd = Path(".")
    # results = calc.parse_hessian(cwd)
    # print(results)
    # hess = results["hessian"]
    # np.save("hess", hess)
    # hess = np.load("hess.npy")

    hess = np.loadtxt("calculated_final_cart_hessian")
    # print("Non-mass-weighted")
    # w, v = np.linalg.eigh(hess)
    # nus = eigval_to_wavenumber(w)
    # neg_inds = w < 0
    # print(w[neg_inds])
    # print(nus[neg_inds])

    # print("Mass-weighted")
    mw_hess = geom.mass_weigh_hessian(hess)
    # w, v = np.linalg.eigh(mw_hess)
    # nus = eigval_to_wavenumber(w)
    # neg_inds = w < 0
    # print(w[neg_inds])
    # print(nus[neg_inds])

    # shaked = geom.copy()
    # shaked.coords = shake_coords(shaked.coords, scale=0.05, seed=25032018)
    # shaked.set_calculator(XTB(pal=4, base_name="shake"))
    # shess = shaked.hessian
    # sw, sv = np.linalg.eigh(shess)
    # with open("shaked.xyz", "w") as handle:
    # handle.write(shaked.as_xyz())

    print("Eckart projected")
    proj_hess = geom.eckart_projection(mw_hess)
    w, v = np.linalg.eigh(proj_hess)
    nus = eigval_to_wavenumber(w)
    neg_inds = w < 0
    print(w[neg_inds])
    print(nus[neg_inds])

    imag_mode = v[:, 0]
    print(imag_mode)
    lengths = np.linspace(-1, 1, 21)
    print(lengths)
    coords_list = list()
    M = np.sqrt(geom.masses_rep)
    for l in lengths:
        new_coords = (geom.mw_coords + l * imag_mode) / M
        coords_list.append(new_coords)
    coords_to_trj("displaced.trj", geom.atoms, coords_list)

    # calc = XTB(pal=4)
    # geom.set_calculator(calc)
    # energies = list()
    # for cs in coords_list:
    # geom.coords = cs
    # energy = geom.energy
    # energies.append(energy)
    # pass
    # print(energies)

    # energies = np.array(energies)
    # np.save("energies", energies)
    energies = np.load("energies.npy")
    energies -= energies.min()
    energies *= 2625.25

    def func_harmonic(x, a, b, c):
        return a + b * (x + c)**2

    fromto = 4
    slice_ = slice(fromto, -fromto + 1)
    ydata = energies[slice_]
    xdata = np.arange(energies.size)[slice_]
    popt, pcov = curve_fit(func_harmonic, xdata, ydata)
    print("popt")
    print(popt)
    print("pcov")
    print(pcov)

    fig, ax = plt.subplots()
    ax.plot(energies, "o-", label="True")
    ax.plot(xdata, func_harmonic(xdata, *popt), "--", label="Harmonic")
    ax.legend()
    plt.show()

    pass
Esempio n. 5
0
def freq_distort(geom, mode_ind):
    print(geom)
    hess = geom.hessian
    mw_hess = geom.mass_weigh_hessian(hess)
    # w, v = np.linalg.eigh(mw_hess)
    # nus = eigval_to_wavenumber(w)
    # neg_inds = w < 0
    # print(w[neg_inds])
    # print(nus[neg_inds])

    # shaked = geom.copy()
    # shaked.coords = shake_coords(shaked.coords, scale=0.05, seed=25032018)
    # shaked.set_calculator(XTB(pal=4, base_name="shake"))
    # shess = shaked.hessian
    # sw, sv = np.linalg.eigh(shess)
    # with open("shaked.xyz", "w") as handle:
    # handle.write(shaked.as_xyz())

    print("Eckart projected")
    proj_hess = geom.eckart_projection(mw_hess)
    w, v = np.linalg.eigh(proj_hess)
    nus = eigval_to_wavenumber(w)
    neg_inds = w < 0
    print(w[neg_inds])
    print(nus[neg_inds])

    imag_mode = v[:, mode_ind]
    print(imag_mode)
    lengths = np.linspace(-1, 1, 21)
    print(lengths)
    coords_list = list()
    M = np.sqrt(geom.masses_rep)
    for l in lengths:
        new_coords = (geom.mw_coords + l * imag_mode) / M
        coords_list.append(new_coords)
    coords_to_trj("displaced.trj", geom.atoms, coords_list)

    energies = list()
    for cs in coords_list:
        geom.coords = cs
        energy = geom.energy
        energies.append(energy)
        pass
    print(energies)

    energies = np.array(energies)
    np.save("energies", energies)

    # energies -= energies.min()
    # energies *= 2625.25

    def func_harmonic(x, a, b, c):
        return a + b * (x + c)**2

    fromto = 4
    slice_ = slice(fromto, -fromto + 1)
    ydata = energies[slice_]
    xdata = np.arange(energies.size)[slice_]
    popt, pcov = curve_fit(func_harmonic, xdata, ydata)
    print("popt")
    print(popt)
    print("pcov")
    print(pcov)

    fig, ax = plt.subplots()
    ax.plot(energies, "o-", label="True")
    ax.plot(xdata, func_harmonic(xdata, *popt), "--", label="Harmonic")
    ax.legend()
    plt.show()

    pass