Esempio n. 1
0
                print('Calculating error: {}, {}, {}, {}, {}, {}'.format(
                    error_type, method, dataset_str, scene_id, im_id, obj_id))

            # Load depth image if VSD is selected
            if error_type == 'vsd' and im_id != im_id_prev:
                depth_path = dp['test_depth_mpath'].format(scene_id, im_id)
                # depth_im = inout.load_depth(depth_path)
                depth_im = inout.load_depth2(depth_path)  # Faster
                depth_im *= dp['cam']['depth_scale']  # to [mm]

            # Load camera matrix
            if error_type in ['vsd', 'cou']:
                K = scene_info[im_id]['cam_K']

            # Load pose estimates
            res = inout.load_results_sixd17(res_path)
            ests = res['ests']

            # Sort the estimates by score (in descending order)
            ests_sorted = sorted(enumerate(ests),
                                 key=lambda x: x[1]['score'],
                                 reverse=True)

            # Select the required number of top estimated poses
            if n_top == 0:  # All estimates are considered
                n_top_curr = None
            elif n_top == -1:  # Given by the number of GT poses
                n_gt = sum([gt['obj_id'] == obj_id for gt in scene_gt[im_id]])
                n_top_curr = n_gt
            else:
                n_top_curr = n_top
Esempio n. 2
0
                print('Calculating error: {}, {}, {}, {}, {}, {}'.format(
                    error_type, method, dataset_str, scene_id, im_id, obj_id))

            # Load depth image if VSD is selected
            if error_type == 'vsd' and im_id != im_id_prev:
                depth_path = dp['test_depth_mpath'].format(scene_id, im_id)
                # depth_im = inout.load_depth(depth_path)
                depth_im = inout.load_depth2(depth_path) # Faster
                depth_im *= dp['cam']['depth_scale'] # to [mm]

            # Load camera matrix
            if error_type in ['vsd', 'cou']:
                K = scene_info[im_id]['cam_K']

            # Load pose estimates
            res = inout.load_results_sixd17(res_path)
            ests = res['ests']

            # Sort the estimates by score (in descending order)
            ests_sorted = sorted(enumerate(ests), key=lambda x: x[1]['score'],
                                 reverse=True)

            # Select the required number of top estimated poses
            if n_top == 0: # All estimates are considered
                n_top_curr = None
            elif n_top == -1: # Given by the number of GT poses
                n_gt = sum([gt['obj_id'] == obj_id for gt in scene_gt[im_id]])
                n_top_curr = n_gt
            else:
                n_top_curr = n_top
            ests_sorted = ests_sorted[slice(0, n_top_curr)]