Esempio n. 1
0
    def test_broyden(self):
        """ Test solving with Broyden's method, instead of the
            default Gauss-Seidel
        """
        # pylint: disable=too-many-statements
        model = Model()
        model.set_var_default(0)
        model.vars('Y', 'YD', 'Ts', 'Td', 'Hs', 'Hh', 'Gs', 'Cs',
                   'Cd', 'Ns', 'Nd')
        model.set_param_default(0)
        Gd = model.param('Gd')
        W = model.param('W')
        alpha1 = model.param('alpha1')
        alpha2 = model.param('alpha2')
        theta = model.param('theta')

        model.add('Cs = Cd')
        model.add('Gs = Gd')
        model.add('Ts = Td')
        model.add('Ns = Nd')
        model.add('YD = (W*Ns) - Ts')
        model.add('Td = theta * W * Ns')
        model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
        model.add('Hs - Hs(-1) =  Gd - Td')
        model.add('Hh - Hh(-1) = YD - Cd')
        model.add('Y = Cs + Gs')
        model.add('Nd = Y/W')

        # setup default parameter values
        Gd.value = 20.
        W.value = 1.0
        alpha1.value = 0.6
        alpha2.value = 0.4
        theta.value = 0.2

        debuglist = []
        model.solve(iterations=100,
                    threshold=1e-4,
                    debuglist=debuglist,
                    method='broyden')
        soln = round_solution(model.solutions[-1], decimals=1)
        print(soln)
        self.assertTrue(numpy.isclose(38.5, soln['Y']))
        self.assertTrue(numpy.isclose(7.7, soln['Ts']))
        self.assertTrue(numpy.isclose(30.8, soln['YD']))
        self.assertTrue(numpy.isclose(18.5, soln['Cs']))
        self.assertTrue(numpy.isclose(12.3, soln['Hs']))
        self.assertTrue(numpy.isclose(12.3, soln['Hh']))
        self.assertTrue(numpy.isclose(0, soln['_Hs__1']))
        self.assertTrue(numpy.isclose(0, soln['_Hh__1']))
Esempio n. 2
0
# The determination of employment.

# We now have 11 equations and 11 unknowns. **Each of the eleven unknowns has been set on the left-hand side of an equation** (This implies that we can use the Gauss-Seidel algorithm to iterate to a solution, convergence is not guaranteed but we can try.)

# ###### Solve

# We have set the default for all of the variables to 0, and that will be used as an initial solution.

# In[15]:

model.solve(iterations=100, threshold=1e-4)

# In[16]:

prev = round_solution(model.solutions[-2], decimals=1)
solution = round_solution(model.solutions[-1], decimals=1)
print("Y         : " + str(solution['Y']))
print("T         : " + str(solution['Ts']))
print("YD        : " + str(solution['YD']))
print("C         : " + str(solution['Cs']))
print("Hs-Hs(-1) : " + str(solution['Hs'] - prev['Hs']))
print("Hh-Hh(-1) : " + str(solution['Hh'] - prev['Hh']))
print("H         : " + str(solution['Hh']))

# ### The code for the full model

# To make the model easier to manipulate, I will encapsulate model creation into a single function.

# In[17]:
Esempio n. 3
0
    model.add('Gs = Gd')
    model.add('Ts = Td')
    model.add('Ns = Nd')
    model.add('YD = (W*Ns) - Ts')
    model.add('Td = theta * W * Ns')
    model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
    model.add('Hs - Hs(-1) =  Gd - Td')
    model.add('Hh - Hh(-1) = YD - Cd')
    model.add('Y = Cs + Gs')
    model.add('Nd = Y/W')

    return model


start = time.clock()

sim = create_model()

for _ in xrange(100):
    sim.solve(iterations=100, threshold=1e-5)

    prev_soln = sim.solutions[-2]
    soln = sim.solutions[-1]
    if is_close(prev_soln, soln, atol=1e-3):
        break

end = time.clock()
print "elapsed time = " + str(end - start)

print round_solution(sim.solutions[-1], decimals=1)
Esempio n. 4
0
    def test_full_model(self):
        """ Test by implementing a model

            This model is taken from the book
                Monetary Economics 2ed, Godley and Lavoie, 2012
            Chapter 3, The Simplest Model wtih Government Money
            Model SIM
        """
        # pylint: disable=too-many-statements
        model = Model()
        model.set_var_default(0)
        model.vars('Y', 'YD', 'Ts', 'Td', 'Hs', 'Hh', 'Gs', 'Cs',
                   'Cd', 'Ns', 'Nd')
        model.set_param_default(0)
        Gd = model.param('Gd')
        W = model.param('W')
        alpha1 = model.param('alpha1')
        alpha2 = model.param('alpha2')
        theta = model.param('theta')

        model.add('Cs = Cd')
        model.add('Gs = Gd')
        model.add('Ts = Td')
        model.add('Ns = Nd')
        model.add('YD = (W*Ns) - Ts')
        model.add('Td = theta * W * Ns')
        model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
        model.add('Hs - Hs(-1) =  Gd - Td')
        model.add('Hh - Hh(-1) = YD - Cd')
        model.add('Y = Cs + Gs')
        model.add('Nd = Y/W')

        # setup default parameter values
        Gd.value = 20.
        W.value = 1.0
        alpha1.value = 0.6
        alpha2.value = 0.4
        theta.value = 0.2

        model.solve(iterations=200, threshold=1e-3)
        soln = round_solution(model.solutions[-1], decimals=1)
        self.assertTrue(numpy.isclose(38.5, soln['Y']))
        self.assertTrue(numpy.isclose(7.7, soln['Ts']))
        self.assertTrue(numpy.isclose(30.8, soln['YD']))
        self.assertTrue(numpy.isclose(18.5, soln['Cs']))
        self.assertTrue(numpy.isclose(12.3, soln['Hs']))
        self.assertTrue(numpy.isclose(12.3, soln['Hh']))
        self.assertTrue(numpy.isclose(0, soln['_Hs__1']))
        self.assertTrue(numpy.isclose(0, soln['_Hh__1']))

        model.solve(iterations=200, threshold=1e-3)
        soln = round_solution(model.solutions[-1], decimals=1)
        self.assertTrue(numpy.isclose(47.9, soln['Y']))
        self.assertTrue(numpy.isclose(9.6, soln['Ts']))
        self.assertTrue(numpy.isclose(38.3, soln['YD']))
        self.assertTrue(numpy.isclose(27.9, soln['Cs']))
        self.assertTrue(numpy.isclose(22.7, soln['Hs']))
        self.assertTrue(numpy.isclose(22.7, soln['Hh']))
        self.assertTrue(numpy.isclose(12.3, soln['_Hs__1']))
        self.assertTrue(numpy.isclose(12.3, soln['_Hh__1']))

        # Now run until the solutions themselves converge
        prev_soln = model.solutions[-1]
        converges = False
        for _ in range(100):
            model.solve(iterations=100, threshold=1e-3)

            # run until we converge
            soln = model.solutions[-1]
            if is_close(prev_soln, soln, atol=1e-3):
                converges = True
                break
            prev_soln = soln

        self.assertTrue(converges)
        prev = round_solution(model.solutions[-2], decimals=1)
        soln = round_solution(model.solutions[-1], decimals=1)
        self.assertTrue(numpy.isclose(100, soln['Y']))
        self.assertTrue(numpy.isclose(20, soln['Ts']))
        self.assertTrue(numpy.isclose(80, soln['YD']))
        self.assertTrue(numpy.isclose(80, soln['Cs']))
        self.assertTrue(numpy.isclose(0, soln['Hs'] - prev['Hs']))
        self.assertTrue(numpy.isclose(0, soln['Hh'] - prev['Hh']))
Esempio n. 5
0
    def test_full_model(self):
        """ Test by implementing a model

            This model is taken from the book
                Monetary Economics 2ed, Godley and Lavoie, 2012
            Chapter 3, The Simplest Model wtih Government Money
            Model SIM
        """
        # pylint: disable=too-many-statements
        model = Model()
        model.set_var_default(0)
        model.vars('Y', 'YD', 'Ts', 'Td', 'Hs', 'Hh', 'Gs', 'Cs',
                   'Cd', 'Ns', 'Nd')
        model.set_param_default(0)
        Gd = model.param('Gd')
        W = model.param('W')
        alpha1 = model.param('alpha1')
        alpha2 = model.param('alpha2')
        theta = model.param('theta')

        model.add('Cs = Cd')
        model.add('Gs = Gd')
        model.add('Ts = Td')
        model.add('Ns = Nd')
        model.add('YD = (W*Ns) - Ts')
        model.add('Td = theta * W * Ns')
        model.add('Cd = alpha1*YD + alpha2*Hh(-1)')
        model.add('Hs - Hs(-1) =  Gd - Td')
        model.add('Hh - Hh(-1) = YD - Cd')
        model.add('Y = Cs + Gs')
        model.add('Nd = Y/W')

        # setup default parameter values
        Gd.value = 20.
        W.value = 1.0
        alpha1.value = 0.6
        alpha2.value = 0.4
        theta.value = 0.2

        model.solve(iterations=200, threshold=1e-3)
        soln = round_solution(model.solutions[-1], decimals=1)
        self.assertTrue(numpy.isclose(38.5, soln['Y']))
        self.assertTrue(numpy.isclose(7.7, soln['Ts']))
        self.assertTrue(numpy.isclose(30.8, soln['YD']))
        self.assertTrue(numpy.isclose(18.5, soln['Cs']))
        self.assertTrue(numpy.isclose(12.3, soln['Hs']))
        self.assertTrue(numpy.isclose(12.3, soln['Hh']))

        model.solve(iterations=200, threshold=1e-3)
        soln = round_solution(model.solutions[-1], decimals=1)
        self.assertTrue(numpy.isclose(47.9, soln['Y']))
        self.assertTrue(numpy.isclose(9.6, soln['Ts']))
        self.assertTrue(numpy.isclose(38.3, soln['YD']))
        self.assertTrue(numpy.isclose(27.9, soln['Cs']))
        self.assertTrue(numpy.isclose(22.7, soln['Hs']))
        self.assertTrue(numpy.isclose(22.7, soln['Hh']))

        # Now run until the solutions themselves converge
        prev_soln = model.solutions[-1]
        converges = False
        for _ in xrange(100):
            model.solve(iterations=100, threshold=1e-3)

            # run until we converge
            soln = model.solutions[-1]
            if is_close(prev_soln, soln, atol=1e-3):
                converges = True
                break
            prev_soln = soln

        self.assertTrue(converges)
        prev = round_solution(model.solutions[-2], decimals=1)
        soln = round_solution(model.solutions[-1], decimals=1)
        self.assertTrue(numpy.isclose(100, soln['Y']))
        self.assertTrue(numpy.isclose(20, soln['Ts']))
        self.assertTrue(numpy.isclose(80, soln['YD']))
        self.assertTrue(numpy.isclose(80, soln['Cs']))
        self.assertTrue(numpy.isclose(0, soln['Hs'] - prev['Hs']))
        self.assertTrue(numpy.isclose(0, soln['Hh'] - prev['Hh']))
Esempio n. 6
0
    model.add('Ts = Td')  # 3.3
    model.add('Ns = Nd')  # 3.4
    model.add('YD = (W*Ns) - Ts')  # 3.5
    model.add('Td = theta * W * Ns')  # 3.6, theta < 1.0
    model.add('Cd = alpha1*YDe + alpha2*Hh(-1)')  # 3.7E
    model.add('Hs - Hs(-1) =  Gd - Td')  # 3.8
    model.add('Hh - Hh(-1) = YD - Cd')  # 3.9
    model.add('Hd - Hs(-1) = YDe - Cd')  # 3.18
    model.add('Y = Cs + Gs')  # 3.10
    model.add('Nd = Y/W')  # 3.11
    model.add('YDe = YD(-1)')   # 3.20

    return model

steady_state = create_simex_model()
steady_state.set_parameters({'alpha1': 0.6,
                             'alpha2': 0.4,
                             'theta': 0.2})
steady_state.set_parameters({'Gd': 20,
                             'W': 1})

steady_state.variables['YD'].value = steady_state.evaluate('Gd*(1-theta)')
for _ in range(100):
    steady_state.solve(iterations=100, threshold=1e-5)

    if is_close(steady_state.solutions[-2],
                steady_state.solutions[-1],
                atol=1e-4):
        break
print(round_solution(steady_state.solutions[-1], decimals=1))

model.add('YD = (W*Ns) - Ts');

model.add('Td = theta * W * Ns');

model.add('Cd = alpha1*YD + alpha2*Hh(-1)');

model.add('Hs - Hs(-1) =  Gd - Td');

model.add('Hh - Hh(-1) = YD - Cd');

model.add('Y = Cs + Gs');

model.add('Nd = Y/W');

model.solve(iterations=100, threshold=1e-4);


prev = round_solution(model.solutions[-2], decimals=1)
solution = round_solution(model.solutions[-1], decimals=1)
print ("Y         : " + str(solution['Y']))
print ("T         : " + str(solution['Ts']))
print ("YD        : " + str(solution['YD']))
print ("C         : " + str(solution['Cs']))
print ("Hs-Hs(-1) : " + str(solution['Hs'] - prev['Hs']))
print ("Hh-Hh(-1) : " + str(solution['Hh'] - prev['Hh']))
print ("H         : " + str(solution['Hh']))


Esempio n. 8
0
                   'Rb': 0.03,
                   'Pbl': 20})
sim.set_parameters({'alpha1': 0.8,
                    'alpha2': 0.2,
                    'chi': 0.1,
                    'lambda20': 0.44196,
                    'lambda22': 1.1,
                    'lambda23': 1,
                    'lambda24': 0.03,
                    'lambda30': 0.3997,
                    'lambda32': 1,
                    'lambda33': 1.1,
                    'lambda34': 0.03,
                    'theta': 0.1938})
sim.set_parameters({'G': 20,
                    'Rbar': 0.03,
                    'Pblbar': 20})

for _ in xrange(100):
    sim.solve(iterations=100, threshold=1e-5)

    prev_soln = sim.solutions[-2]
    soln = sim.solutions[-1]
    if is_close(prev_soln, soln, atol=1e-3):
        break

end = time.clock()
print "elapsed time = " + str(end-start)

print round_solution(sim.solutions[-1], decimals=1)
Esempio n. 9
0
    model.add('Ts = Td')  # 3.3
    model.add('Ns = Nd')  # 3.4
    model.add('YD = (W*Ns) - Ts')  # 3.5
    model.add('Td = theta * W * Ns')  # 3.6, theta < 1.0
    model.add('Cd = alpha1*YDe + alpha2*Hh(-1)')  # 3.7E
    model.add('Hs - Hs(-1) =  Gd - Td')  # 3.8
    model.add('Hh - Hh(-1) = YD - Cd')  # 3.9
    model.add('Hd - Hs(-1) = YDe - Cd')  # 3.18
    model.add('Y = Cs + Gs')  # 3.10
    model.add('Nd = Y/W')  # 3.11
    model.add('YDe = YD(-1)')   # 3.20

    return model

steady_state = create_simex_model()
steady_state.set_parameters({'alpha1': 0.6,
                             'alpha2': 0.4,
                             'theta': 0.2})
steady_state.set_parameters({'Gd': 20,
                             'W': 1})

steady_state.variables['YD'].value = steady_state.evaluate('Gd*(1-theta)')
for _ in xrange(100):
    steady_state.solve(iterations=100, threshold=1e-5)

    if is_close(steady_state.solutions[-2],
                steady_state.solutions[-1],
                atol=1e-4):
        break
print round_solution(steady_state.solutions[-1], decimals=1)