Esempio n. 1
0
    def test_python_transformer_pipeline_persistence(self):
        """
        Pipeline[MockUnaryTransformer, Binarizer]
        """
        temp_path = tempfile.mkdtemp()

        try:
            df = self.spark.range(0, 10).toDF("input")
            tf = MockUnaryTransformer(
                shiftVal=2).setInputCol("input").setOutputCol("shiftedInput")
            tf2 = Binarizer(threshold=6,
                            inputCol="shiftedInput",
                            outputCol="binarized")
            pl = Pipeline(stages=[tf, tf2])
            model = pl.fit(df)

            pipeline_path = temp_path + "/pipeline"
            pl.save(pipeline_path)
            loaded_pipeline = Pipeline.load(pipeline_path)
            self._compare_pipelines(pl, loaded_pipeline)

            model_path = temp_path + "/pipeline-model"
            model.save(model_path)
            loaded_model = PipelineModel.load(model_path)
            self._compare_pipelines(model, loaded_model)
        finally:
            try:
                rmtree(temp_path)
            except OSError:
                pass
Esempio n. 2
0
    def test_nested_pipeline_persistence(self):
        """
        Pipeline[HashingTF, Pipeline[PCA]]
        """
        temp_path = tempfile.mkdtemp()

        try:
            df = self.spark.createDataFrame([(["a", "b", "c"], ),
                                             (["c", "d", "e"], )], ["words"])
            tf = HashingTF(numFeatures=10,
                           inputCol="words",
                           outputCol="features")
            pca = PCA(k=2, inputCol="features", outputCol="pca_features")
            p0 = Pipeline(stages=[pca])
            pl = Pipeline(stages=[tf, p0])
            model = pl.fit(df)

            pipeline_path = temp_path + "/pipeline"
            pl.save(pipeline_path)
            loaded_pipeline = Pipeline.load(pipeline_path)
            self._compare_pipelines(pl, loaded_pipeline)

            model_path = temp_path + "/pipeline-model"
            model.save(model_path)
            loaded_model = PipelineModel.load(model_path)
            self._compare_pipelines(model, loaded_model)
        finally:
            try:
                rmtree(temp_path)
            except OSError:
                pass
Esempio n. 3
0
    def test_nested_pipeline_persistence(self):
        """
        Pipeline[HashingTF, Pipeline[PCA]]
        """
        temp_path = tempfile.mkdtemp()

        try:
            df = self.spark.createDataFrame([(["a", "b", "c"],), (["c", "d", "e"],)], ["words"])
            tf = HashingTF(numFeatures=10, inputCol="words", outputCol="features")
            pca = PCA(k=2, inputCol="features", outputCol="pca_features")
            p0 = Pipeline(stages=[pca])
            pl = Pipeline(stages=[tf, p0])
            model = pl.fit(df)

            pipeline_path = temp_path + "/pipeline"
            pl.save(pipeline_path)
            loaded_pipeline = Pipeline.load(pipeline_path)
            self._compare_pipelines(pl, loaded_pipeline)

            model_path = temp_path + "/pipeline-model"
            model.save(model_path)
            loaded_model = PipelineModel.load(model_path)
            self._compare_pipelines(model, loaded_model)
        finally:
            try:
                rmtree(temp_path)
            except OSError:
                pass
Esempio n. 4
0
    def test_python_transformer_pipeline_persistence(self):
        """
        Pipeline[MockUnaryTransformer, Binarizer]
        """
        temp_path = tempfile.mkdtemp()

        try:
            df = self.spark.range(0, 10).toDF('input')
            tf = MockUnaryTransformer(shiftVal=2)\
                .setInputCol("input").setOutputCol("shiftedInput")
            tf2 = Binarizer(threshold=6, inputCol="shiftedInput", outputCol="binarized")
            pl = Pipeline(stages=[tf, tf2])
            model = pl.fit(df)

            pipeline_path = temp_path + "/pipeline"
            pl.save(pipeline_path)
            loaded_pipeline = Pipeline.load(pipeline_path)
            self._compare_pipelines(pl, loaded_pipeline)

            model_path = temp_path + "/pipeline-model"
            model.save(model_path)
            loaded_model = PipelineModel.load(model_path)
            self._compare_pipelines(model, loaded_model)
        finally:
            try:
                rmtree(temp_path)
            except OSError:
                pass
Esempio n. 5
0
    def test_pipeline(self, bag):
        from pyspark.ml.pipeline import Pipeline
        # create and save and load
        pth = "/tmp/spatial-join"
        new_p = Pipeline().setStages([bag["transformer"]])
        new_p.write().overwrite().save(pth)
        saved_p = Pipeline.load(pth)

        # check transformations
        inp = bag["input"]
        exp = bag["expected"]
        check(new_p.fit(inp), inp, exp)
        check(saved_p.fit(inp), inp, exp)