Esempio n. 1
0
    def test_compute_timestep_without_adaptive(self):
        # Given.
        integrator = EulerIntegrator(fluid=EulerStep())
        equations = [SHM(dest="fluid", sources=None)]
        self._setup_integrator(equations=equations, integrator=integrator)

        # When
        dt = integrator.compute_time_step(0.1, 0.5)

        # Then
        self.assertEqual(dt, None)
Esempio n. 2
0
    def test_compute_timestep_with_dt_adapt_with_invalid_values(self):
        # Given.
        self.pa.extend(1)
        self.pa.align_particles()
        self.pa.add_property('dt_adapt')
        self.pa.dt_adapt[:] = [0.0, -2.0]

        integrator = EulerIntegrator(fluid=EulerStep())
        equations = [SHM(dest="fluid", sources=None)]
        self._setup_integrator(equations=equations, integrator=integrator)

        # When
        dt = integrator.compute_time_step(0.1, 0.5)

        # Then
        self.assertEqual(dt, None)
Esempio n. 3
0
def main():
    # Create the application.
    app = Application()

    dim = 1
    # Create the kernel
    kernel = CubicSpline(dim=dim)

    # Create the integrator.
    integrator = EulerIntegrator(fluid=DummyStepper())

    solver = Solver(kernel=kernel, dim=dim, integrator=integrator)
    solver.set_time_step(0.1)
    solver.set_final_time(0.1)

    equations = [TotalMass(dest='fluid', sources=['fluid'])]
    app.setup(
        solver=solver, equations=equations, particle_factory=create_particles)
    # There is no need to write any output as the test below
    # computes the total mass.
    solver.set_disable_output(True)
    app.run()

    fluid = solver.particles[0]
    err = fluid.total_mass[0] - 10.0
    assert abs(err) < 1e-16, "Error: %s" % err
Esempio n. 4
0
    def test_compute_timestep_with_dt_cfl(self):
        # Given.
        self.pa.extend(1)
        self.pa.align_particles()
        self.pa.add_property('dt_cfl')
        self.pa.h[:] = 1.0
        self.pa.dt_cfl[:] = [1.0, 2.0]

        integrator = EulerIntegrator(fluid=EulerStep())
        equations = [SHM(dest="fluid", sources=None)]
        self._setup_integrator(equations=equations, integrator=integrator)

        # When
        cfl = 0.5
        dt = integrator.compute_time_step(0.1, cfl)

        # Then
        expect = cfl * 1.0 / (2.0)
        self.assertEqual(dt, expect)
 def create_solver(self):
     kernel = CubicSpline(dim=2)
     integrator = EulerIntegrator(fluid=EulerStep())
     dt = 1e-4
     tf = 1e-4
     solver = Solver(kernel=kernel,
                     dim=2,
                     integrator=integrator,
                     dt=dt,
                     tf=tf)
     return solver
Esempio n. 6
0
    def create_solver(self):
        dim = 1
        # Create the kernel
        kernel = CubicSpline(dim=dim)

        # Create the integrator.
        integrator = EulerIntegrator(fluid=DummyStepper())

        solver = Solver(kernel=kernel, dim=dim, integrator=integrator)
        solver.set_time_step(0.1)
        solver.set_final_time(0.1)
        # There is no need to write any output as the test below
        # computes the total mass.
        solver.set_disable_output(True)
        return solver
Esempio n. 7
0
    def create_solver(self):
        kernel = CubicSpline(dim=2)

        integrator = EulerIntegrator(sand=EulerDEMStep())

        dt = 5e-5
        print("DT: %s" % dt)
        tf = 2
        solver = Solver(kernel=kernel,
                        dim=2,
                        integrator=integrator,
                        dt=dt,
                        tf=tf,
                        adaptive_timestep=False)

        return solver
Esempio n. 8
0
    def create_solver(self):
        '''
        Define solver
        '''

        kernel = QuinticSpline(dim=2)

        integrator = EulerIntegrator(fluid=EulerStep())

        solver = Solver(kernel=kernel,
                        dim=2,
                        integrator=integrator,
                        dt=self.dt,
                        tf=self.tf,
                        pfreq=100)

        return solver
Esempio n. 9
0
    def test_helper_can_be_used_with_stepper_on_gpu(self):
        # Given.
        integrator = EulerIntegrator(fluid=StepWithHelper())
        equations = [SHM(dest="fluid", sources=None)]
        self._setup_integrator(equations=equations, integrator=integrator)

        # When
        tf = 1.0
        dt = tf / 2

        def callback(t):
            pass

        self._integrate(integrator, dt, tf, callback)

        # Then
        if self.pa.gpu is not None:
            self.pa.gpu.pull('u')
        u = self.pa.u
        self.assertEqual(u, -2.0 * self.pa.x)
Esempio n. 10
0
    def create_solver(self):
        '''
        Define solver
        '''
        kernel = WendlandQuintic(dim=2)

        if self.INT == 'eul':
            integrator = EulerIntegrator(fluid=EulerStep())
        elif self.INT == 'rk4':
            integrator = RK4Integrator(fluid=RK4Step())
        else:
            raise Exception('Invalid integrator argument')

        solver = Solver(kernel=kernel,
                        dim=2,
                        integrator=integrator,
                        dt=self.dt,
                        tf=self.tf,
                        pfreq=self.pfreq)

        return solver
Esempio n. 11
0
    def initialize(self):
        pass

    def stage1(self):
        pass


# Create the application.
app = Application()

dim = 1
# Create the kernel
kernel = CubicSpline(dim=dim)

# Create the integrator.
integrator = EulerIntegrator(fluid=DummyStepper())

solver = Solver(kernel=kernel, dim=dim, integrator=integrator)
solver.set_time_step(0.1)
solver.set_final_time(0.1)

equations = [TotalMass(dest='fluid', sources=['fluid'])]
app.setup(solver=solver,
          equations=equations,
          particle_factory=create_particles)
# There is no need to write any output as the test below
# computes the total mass.
solver.set_disable_output(True)
app.run()

fluid = solver.particles[0]
Esempio n. 12
0
    app = CircularDamBreak()
    one_time_equations = [
        Group(
            equations=[
                CorrectionFactorVariableSmoothingLength(dest='fluid',
                                                        sources=['fluid',]),
                InitialTimeSummationDensity(dest='fluid', sources=['fluid',]),
                SWEOS(dest='fluid'),
                ], update_nnps=False
            )
    ]

    from pysph.sph.acceleration_eval import AccelerationEval
    from pysph.sph.sph_compiler import SPHCompiler
    kernel = CubicSpline(dim=2)
    integrator = EulerIntegrator(fluid=EulerStep())
    dt = 1e-4; tf = 2
    solver = Solver(
        kernel=kernel,
        dim=2,
        integrator=integrator,
        dt=dt,
        tf=tf
        )
    part_arr = app.create_particles
    eqns = app.create_equations()
    app.setup(solver=solver, equations=eqns,
          particle_factory=part_arr)
    a_eval = AccelerationEval(
        solver.particles, equations=one_time_equations, kernel=CubicSpline(dim=2))
    compiler = SPHCompiler(a_eval, None)
Esempio n. 13
0
    fluid, boundary = geom.create_particles(**kw)
    boundary.x -= 0.1
    boundary.y -= 0.1
    return [fluid, boundary]

# Create the application.
app = Application()

# Create the kernel
kernel = CubicSpline(dim=2)


# Create the Integrator. Currently, PySPH supports multi-stage,
# predictor corrector and a TVD-RK3 integrators.

integrator = EulerIntegrator(fluid=IISPHStep())

# Create a solver.
solver = Solver(kernel=kernel, dim=dim, integrator=integrator,
                dt=dt, tf=tf, adaptive_timestep=True,
                fixed_h=False)
solver.set_print_freq(10)

# create the equations
equations = [

    #####################################################################
    # "Predict advection" step as per algorithm 1 in paper.
    Group(equations=[
            NumberDensity(dest='boundary', sources=['boundary']),
        ]
Esempio n. 14
0
    def __init__(self,
                 all_particles,
                 scheme,
                 domain=None,
                 innerloop=True,
                 updates=True,
                 parallel=False,
                 steps=None,
                 D=0):
        """The second integrator is a simple Euler-Integrator (accurate
        enough due to very small time steps; very fast) using EBGSteps.
        EBGSteps are basically the same as EulerSteps, exept for the fact
        that they work with an intermediate ebg velocity [eu, ev, ew].
        This velocity does not interfere with the actual velocity, which
        is neseccery to not disturb the real velocity through artificial
        damping in this step. The ebg velocity is initialized for each
        inner loop again and reset in the outer loop."""
        from math import ceil
        from pysph.base.kernels import CubicSpline
        from pysph.sph.integrator_step import EBGStep
        from compyle.config import get_config
        from pysph.sph.integrator import EulerIntegrator
        from pysph.sph.scheme import BeadChainScheme
        from pysph.sph.equation import Group
        from pysph.sph.fiber.utils import (HoldPoints, Contact,
                                           ComputeDistance)
        from pysph.sph.fiber.beadchain import (Tension, Bending,
                                               ArtificialDamping)
        from pysph.base.nnps import DomainManager, LinkedListNNPS
        from pysph.sph.acceleration_eval import AccelerationEval
        from pysph.sph.sph_compiler import SPHCompiler

        if not isinstance(scheme, BeadChainScheme):
            raise TypeError("Scheme must be BeadChainScheme")

        self.innerloop = innerloop
        self.dt = scheme.dt
        self.fiber_dt = scheme.fiber_dt
        self.domain_updates = updates
        self.steps = steps
        self.D = D
        self.eta0 = scheme.rho0 * scheme.nu

        # if there are more than 1 particles involved, elastic equations are
        # iterated in an inner loop.
        if self.innerloop:
            # second integrator
            # self.fiber_integrator = EulerIntegrator(fiber=EBGStep())
            steppers = {}
            for f in scheme.fibers:
                steppers[f] = EBGStep()
            self.fiber_integrator = EulerIntegrator(**steppers)
            # The type of spline has no influence here. It must be large enough
            # to contain the next particle though.
            kernel = CubicSpline(dim=scheme.dim)
            equations = []
            g1 = []
            for fiber in scheme.fibers:
                g1.append(ComputeDistance(dest=fiber, sources=[fiber]))
            equations.append(Group(equations=g1))

            g2 = []
            for fiber in scheme.fibers:
                g2.append(
                    Tension(dest=fiber, sources=None, ea=scheme.E * scheme.A))
                g2.append(
                    Bending(dest=fiber, sources=None, ei=scheme.E * scheme.Ip))
                g2.append(
                    Contact(dest=fiber,
                            sources=scheme.fibers,
                            E=scheme.E,
                            d=scheme.dx,
                            dim=scheme.dim,
                            k=scheme.k,
                            lim=scheme.lim,
                            eta0=self.eta0))
                g2.append(ArtificialDamping(dest=fiber, sources=None,
                                            d=self.D))
            equations.append(Group(equations=g2))

            g3 = []
            for fiber in scheme.fibers:
                g3.append(HoldPoints(dest=fiber, sources=None, tag=100))
            equations.append(Group(equations=g3))

            # These equations are applied to fiber particles only - that's the
            # reason for computational speed up.
            particles = [p for p in all_particles if p.name in scheme.fibers]
            # A seperate DomainManager is needed to ensure that particles don't
            # leave the domain.
            if domain:
                xmin = domain.manager.xmin
                ymin = domain.manager.ymin
                zmin = domain.manager.zmin
                xmax = domain.manager.xmax
                ymax = domain.manager.ymax
                zmax = domain.manager.zmax
                periodic_in_x = domain.manager.periodic_in_x
                periodic_in_y = domain.manager.periodic_in_y
                periodic_in_z = domain.manager.periodic_in_z
                gamma_yx = domain.manager.gamma_yx
                gamma_zx = domain.manager.gamma_zx
                gamma_zy = domain.manager.gamma_zy
                n_layers = domain.manager.n_layers
                N = self.steps or int(ceil(self.dt / self.fiber_dt))
                # dt = self.dt/N
                self.domain = DomainManager(xmin=xmin,
                                            xmax=xmax,
                                            ymin=ymin,
                                            ymax=ymax,
                                            zmin=zmin,
                                            zmax=zmax,
                                            periodic_in_x=periodic_in_x,
                                            periodic_in_y=periodic_in_y,
                                            periodic_in_z=periodic_in_z,
                                            gamma_yx=gamma_yx,
                                            gamma_zx=gamma_zx,
                                            gamma_zy=gamma_zy,
                                            n_layers=n_layers,
                                            dt=self.dt,
                                            calls_per_step=N)
            else:
                self.domain = None
            # A seperate list for the nearest neighbourhood search is
            # benefitial since it is much smaller than the original one.
            nnps = LinkedListNNPS(dim=scheme.dim,
                                  particles=particles,
                                  radius_scale=kernel.radius_scale,
                                  domain=self.domain,
                                  fixed_h=False,
                                  cache=False,
                                  sort_gids=False)
            # The acceleration evaluator needs to be set up in order to compile
            # it together with the integrator.
            if parallel:
                self.acceleration_eval = AccelerationEval(
                    particle_arrays=particles,
                    equations=equations,
                    kernel=kernel)
            else:
                self.acceleration_eval = AccelerationEval(
                    particle_arrays=particles,
                    equations=equations,
                    kernel=kernel,
                    mode='serial')
            # Compilation of the integrator not using openmp, because the
            # overhead is too large for those few fiber particles.
            comp = SPHCompiler(self.acceleration_eval, self.fiber_integrator)
            if parallel:
                comp.compile()
            else:
                config = get_config()
                config.use_openmp = False
                comp.compile()
                config.use_openmp = True
            self.acceleration_eval.set_nnps(nnps)

            # Connecting neighbourhood list to integrator.
            self.fiber_integrator.set_nnps(nnps)
Esempio n. 15
0
dim = 2
dt = 1e-2
tf = 1.0

# Create the application.
app = Application()

# Create the kernel
#kernel = Gaussian(dim=dim)
kernel = CubicSpline(dim=dim)

# Create the Integrator. Currently, PySPH supports multi-stage,
# predictor corrector and a TVD-RK3 integrators.

integrator = EulerIntegrator(fluid1=IISPHStep(), fluid2=IISPHStep())

# Create a solver.
solver = Solver(kernel=kernel,
                dim=dim,
                integrator=integrator,
                dt=dt,
                tf=tf,
                adaptive_timestep=True,
                fixed_h=False)
solver.set_print_freq(10)

# create the equations
# create the equations
equations = [
    Group(equations=[