def test_pwl_avrg(): x = [0.0, 1.0, 2.0, 2.5, 4.0] y1 = [1.0, -0.5, 1.5, 0.75] y2 = [1.5, -0.4, 1.5, 0.25] f1 = spk.PieceWiseLinFunc(x, y1, y2) x = [0.0, 0.75, 2.0, 2.5, 2.7, 4.0] y1 = [0.5, 1.0, -0.25, 0.0, 1.5] y2 = [0.8, 0.2, -1.0, 0.0, 2.0] f2 = spk.PieceWiseLinFunc(x, y1, y2) x_expected = [0.0, 0.75, 1.0, 2.0, 2.5, 2.7, 4.0] y1_expected = np.array([ 1.5, 1.0 + 1.0 + 0.5 * 0.75, -0.5 + 1.0 - 0.8 * 0.25 / 1.25, 1.5 - 0.25, 0.75, 1.5 + 0.75 - 0.5 * 0.2 / 1.5 ]) / 2 y2_expected = np.array([ 0.8 + 1.0 + 0.5 * 0.75, 1.5 + 1.0 - 0.8 * 0.25 / 1.25, -0.4 + 0.2, 1.5 - 1.0, 0.75 - 0.5 * 0.2 / 1.5, 2.25 ]) / 2 f1.add(f2) f1.mul_scalar(0.5) assert_array_almost_equal(f1.x, x_expected, decimal=16) assert_array_almost_equal(f1.y1, y1_expected, decimal=16) assert_array_almost_equal(f1.y2, y2_expected, decimal=16)
def test_pwl_add(): x = [0.0, 1.0, 2.0, 2.5, 4.0] y1 = [1.0, -0.5, 1.5, 0.75] y2 = [1.5, -0.4, 1.5, 0.25] f = spk.PieceWiseLinFunc(x, y1, y2) f1 = copy(f) x = [0.0, 0.75, 2.0, 2.5, 2.7, 4.0] y1 = [0.5, 1.0, -0.25, 0.0, 1.5] y2 = [0.8, 0.2, -1.0, 0.0, 2.0] f2 = spk.PieceWiseLinFunc(x, y1, y2) f1.add(f2) x_expected = [0.0, 0.75, 1.0, 2.0, 2.5, 2.7, 4.0] y1_expected = [ 1.5, 1.0 + 1.0 + 0.5 * 0.75, -0.5 + 1.0 - 0.8 * 0.25 / 1.25, 1.5 - 0.25, 0.75, 1.5 + 0.75 - 0.5 * 0.2 / 1.5 ] y2_expected = [ 0.8 + 1.0 + 0.5 * 0.75, 1.5 + 1.0 - 0.8 * 0.25 / 1.25, -0.4 + 0.2, 1.5 - 1.0, 0.75 - 0.5 * 0.2 / 1.5, 2.25 ] assert_array_almost_equal(f1.x, x_expected, decimal=16) assert_array_almost_equal(f1.y1, y1_expected, decimal=16) assert_array_almost_equal(f1.y2, y2_expected, decimal=16) f2.add(f) assert_array_almost_equal(f2.x, x_expected, decimal=16) assert_array_almost_equal(f2.y1, y1_expected, decimal=16) assert_array_almost_equal(f2.y2, y2_expected, decimal=16) f1.add(f2) # same x, but y doubled assert_array_almost_equal(f1.x, f2.x, decimal=16) assert_array_almost_equal(f1.y1, 2 * f2.y1, decimal=16) assert_array_almost_equal(f1.y2, 2 * f2.y2, decimal=16)
def test_pwl(): x = [0.0, 1.0, 2.0, 2.5, 4.0] y1 = [1.0, -0.5, 1.5, 0.75] y2 = [1.5, -0.4, 1.5, 0.25] f = spk.PieceWiseLinFunc(x, y1, y2) # function values assert_equal(f(0.0), 1.0) assert_equal(f(0.5), 1.25) assert_equal(f(1.0), 0.5) assert_equal(f(2.0), 1.1 / 2) assert_equal(f(2.25), 1.5) assert_equal(f(2.5), 2.25 / 2) assert_equal(f(3.5), 0.75 - 0.5 * 1.0 / 1.5) assert_equal(f(4.0), 0.25) assert_array_equal(f( [0.0, 0.5, 1.0, 2.0, 2.25, 2.5, 3.5, 4.0]), [1.0, 1.25, 0.5, 0.55, 1.5, 2.25 / 2, 0.75 - 0.5 / 1.5, 0.25]) xp, yp = f.get_plottable_data() xp_expected = [0.0, 1.0, 1.0, 2.0, 2.0, 2.5, 2.5, 4.0] yp_expected = [1.0, 1.5, -0.5, -0.4, 1.5, 1.5, 0.75, 0.25] assert_array_almost_equal(xp, xp_expected, decimal=16) assert_array_almost_equal(yp, yp_expected, decimal=16) avrg_expected = (1.25 - 0.45 + 0.75 + 1.5 * 0.5) / 4.0 assert_almost_equal(f.avrg(), avrg_expected, decimal=16) # interval averaging a = f.avrg([0.5, 2.5]) assert_almost_equal(a, (1.375 * 0.5 - 0.45 + 0.75) / 2.0, decimal=16) a = f.avrg([1.5, 3.5]) assert_almost_equal(a, (-0.425 * 0.5 + 0.75 + (0.75 + 0.75 - 0.5 / 1.5) / 2) / 2.0, decimal=16) a = f.avrg((1.0, 3.5)) assert_almost_equal(a, (-0.45 + 0.75 + (0.75 + 0.75 - 0.5 / 1.5) / 2) / 2.5, decimal=16) a = f.avrg([1.0, 4.0]) assert_almost_equal(a, (-0.45 + 0.75 + 1.5 * 0.5) / 3.0, decimal=16) # interval between support points a = f.avrg([1.1, 1.5]) assert_almost_equal(a, (-0.5 + 0.1 * 0.1 - 0.45) * 0.5, decimal=14) # starting at a support point a = f.avrg([1.0, 1.5]) assert_almost_equal(a, (-0.5 - 0.45) * 0.5, decimal=14) # start and end at support point a = f.avrg([1.0, 2.0]) assert_almost_equal(a, (-0.5 - 0.4) * 0.5, decimal=14) # averaging over multiple intervals a = f.avrg([(0.5, 1.5), (1.5, 2.5)]) assert_almost_equal(a, (1.375 * 0.5 - 0.45 + 0.75) / 2.0, decimal=16)
def test_pwl_mul(): x = [0.0, 1.0, 2.0, 2.5, 4.0] y1 = [1.0, -0.5, 1.5, 0.75] y2 = [1.5, -0.4, 1.5, 0.25] f = spk.PieceWiseLinFunc(x, y1, y2) f.mul_scalar(1.5) assert_array_almost_equal(f.x, x, decimal=16) assert_array_almost_equal(f.y1, 1.5 * np.array(y1), decimal=16) assert_array_almost_equal(f.y2, 1.5 * np.array(y2), decimal=16) f.mul_scalar(1.0 / 5.0) assert_array_almost_equal(f.y1, 1.5 / 5.0 * np.array(y1), decimal=16) assert_array_almost_equal(f.y2, 1.5 / 5.0 * np.array(y2), decimal=16)