Esempio n. 1
0
def plotPSTHs(ax,
              sts,
              t=None,
              bs=100,
              c='b',
              show_single=False,
              show_ticks=False,
              ylim=None,
              show_sd=True,
              lw=2):
    single_neurons = []
    if len(sts.shape) > 1:
        for st in sts:
            xs, ys = spk.psth(st, bs).get_plottable_data()
            single_neurons.append(ys)
            if show_single:
                ax.plot(xs, ys, c='grey', lw=0.3)
    else:
        show_sd = False
    xy, ys = spk.psth(sts.flatten(), bs).get_plottable_data()
    ys = ys / sts.shape[0]
    if show_sd:
        ax.fill_between(xy,
                        ys - np.std(single_neurons, 0),
                        ys + np.std(single_neurons, 0),
                        color=c)
        ax.plot(xy, ys, c='k', lw=2)
    else:
        ax.plot(xy, ys, c=c, lw=lw)
    if t is not None:
        ax.set_title(t)
    if ylim is not None:
        ax.set_ylim(ylim)
    if show_ticks == False:
        ax.set_xticks(())
        ax.set_yticks(())
Esempio n. 2
0
f = spk.spike_profile(spike_trains[0], spike_trains[1])
x, y = f.get_plottable_data()

plt.plot(x, y, '-b', label="SPIKE-profile")

plt.axis([0, 4000, -0.1, 1.1])
plt.legend(loc="center right")

plt.figure()

plt.subplot(211)

f = spk.spike_sync_profile_multi(spike_trains)
x, y = f.get_plottable_data()
plt.plot(x, y, '-b', alpha=0.7, label="SPIKE-Sync profile")

x1, y1 = f.get_plottable_data(averaging_window_size=50)
plt.plot(x1, y1, '-k', lw=2.5, label="averaged SPIKE-Sync profile")

plt.subplot(212)

f_psth = spk.psth(spike_trains, bin_size=50.0)
x, y = f_psth.get_plottable_data()
plt.plot(x, y, '-k', alpha=1.0, label="PSTH")


print("Average:", f.avrg())

plt.show()
Esempio n. 3
0
f = spk.spike_sync_profile(spike_trains)
x, y = f.get_plottable_data()

with open('../export/spike_sync_profile.csv', 'w') as fw:
    writer = csv.writer(fw)
    writer.writerows(t([x, y]))

plt.plot(x, y, '-b', alpha=0.7, label="SPIKE-Sync profile")

x1, y1 = f.get_plottable_data(averaging_window_size=50)
plt.plot(x1, y1, '-k', lw=2.5, label="averaged SPIKE-Sync profile")

with open('../export/spike_sync_averaged.csv', 'w') as fw:
    writer = csv.writer(fw)
    writer.writerows(t([x1, y1]))

plt.subplot(212)

f_psth = spk.psth(spike_trains, bin_size=50.0)
x, y = f_psth.get_plottable_data()
plt.plot(x, y, '-k', alpha=1.0, label="PSTH")

with open('../export/spike_sync_averaged_last.csv', 'w') as fw:
    writer = csv.writer(fw)
    writer.writerows(t([x, y]))

print("Average:", f.avrg())

plt.show()
Esempio n. 4
0
def iter_plot0(md):
    import seaborn as sns
    import pickle
    with open('cell_indexs.p', 'rb') as f:
        returned_list = pickle.load(f)
    index_exc = returned_list[0]
    index_inh = returned_list[1]
    index, mdf1 = md
    #wgf = {0.025:None,0.05:None,0.125:None,0.25:None,0.3:None,0.4:None,0.5:None,1.0:None,1.5:None,2.0:None,2.5:None,3.0:None}
    wgf = {
        0.0025: None,
        0.0125: None,
        0.025: None,
        0.05: None,
        0.125: None,
        0.25: None,
        0.3: None,
        0.4: None,
        0.5: None,
        1.0: None,
        1.5: None,
        2.0: None,
        2.5: None,
        3.0: None
    }

    weight_gain_factors = {k: v for k, v in enumerate(wgf.keys())}
    print(len(weight_gain_factors))
    print(weight_gain_factors.keys())
    #weight_gain_factors = {0:0.5,1:1.0,2:1.5,3:2.0,4:2.5,5:3}
    #weight_gain_factors = {:None,1.0:None,1.5:None,2.0:None,2.5:None}

    k = weight_gain_factors[index]
    #print(len(mdf1.segments),'length of block')

    ass = mdf1.analogsignals[0]

    time_points = ass.times
    avg = np.mean(ass, axis=0)  # Average over signals of Segment
    #maxx = np.max(ass, axis=0)  # Average over signals of Segment
    std = np.std(ass, axis=0)  # Average over signals of Segment
    #avg_minus =
    plt.figure()
    plt.plot([i for i in range(0, len(avg))], avg)
    plt.plot([i for i in range(0, len(std))], std)

    plt.title("Mean and Standard Dev of $V_{m}$ amplitude per neuron ")
    plt.xlabel('time $(ms)$')
    plt.xlabel('Voltage $(mV)$')

    plt.savefig(str(index) + 'prs.png')
    vm_spiking = []
    vm_not_spiking = []
    spike_trains = []
    binary_trains = []
    max_spikes = 0

    vms = np.array(mdf1.analogsignals[0].as_array().T)
    #print(data)
    #for i,vm in enumerate(data):

    cnt = 0
    for spiketrain in mdf1.spiketrains:
        #spiketrain = mdf1.spiketrains[index]
        y = np.ones_like(spiketrain) * spiketrain.annotations['source_id']
        #import sklearn
        #sklearn.decomposition.NMF(y)
        # argument edges is the time interval you want to be considered.
        pspikes = pyspike.SpikeTrain(spiketrain, edges=(0, len(ass)))
        spike_trains.append(pspikes)
        if len(spiketrain) > max_spikes:
            max_spikes = len(spiketrain)

        if np.max(ass[spiketrain.annotations['source_id']]) > 0.0:
            vm_spiking.append(vms[spiketrain.annotations['source_id']])
        else:
            vm_not_spiking.append(vms[spiketrain.annotations['source_id']])
        cnt += 1

    for spiketrain in mdf1.spiketrains:
        x = conv.BinnedSpikeTrain(spiketrain,
                                  binsize=1 * pq.ms,
                                  t_start=0 * pq.s)
        binary_trains.append(x)
    end_floor = np.floor(float(mdf1.t_stop))
    dt = float(mdf1.t_stop) % end_floor
    mdf1.t_start
    #v = mdf1.take_slice_of_analogsignalarray_by_unit()
    t_axis = np.arange(float(mdf1.t_start), float(mdf1.t_stop), dt)
    plt.figure()
    plt.clf()

    plt.figure()
    plt.clf()
    cleaned = []
    data = np.array(mdf1.analogsignals[0].as_array().T)
    #print(data)
    for i, vm in enumerate(data):
        if np.max(vm) > 900.0 or np.min(vm) < -900.0:
            pass
        else:
            plt.plot(ass.times, vm)  #,label='neuron identifier '+str(i)))
            cleaned.append(vm)
            #vm = s#.as_array()[:,i]

    assert len(cleaned) < len(ass)

    print(len(cleaned))
    plt.title('neuron $V_{m}$')
    #plt.legend(loc="upper left")
    plt.savefig(str('weight_') + str(k) + 'analogsignals' + '.png')
    plt.xlabel('Time $(ms)$')
    plt.ylabel('Voltage $(mV)$')

    plt.close()

    #pass

    plt.figure()
    plt.clf()
    plt.title('Single Neuron $V_{m}$ trace')
    plt.plot(ass.times[0:int(len(ass.times) / 10)],
             vm_not_spiking[index_exc[0]][0:int(len(ass.times) / 10)])
    plt.xlabel('$ms$')
    plt.ylabel('$mV$')
    plt.xlabel('Time $(ms)$')
    plt.ylabel('Voltage $(mV)$')
    plt.savefig(str('weight_') + str(k) + 'eespecific_analogsignals' + '.png')
    plt.close()

    plt.figure()
    plt.clf()
    plt.title('Single Neuron $V_{m}$ trace')
    plt.plot(ass.times[0:int(len(ass.times) / 10)],
             vm_not_spiking[index_inh[0]][0:int(len(ass.times) / 10)])
    plt.xlabel('$ms$')
    plt.ylabel('$mV$')

    plt.savefig(str('weight_') + str(k) + 'inhibitory_analogsignals' + '.png')
    plt.close()

    cvs = [0 for i in range(0, len(spike_trains))]
    cvsd = {}
    cvs = []
    cvsi = []
    rates = []  # firing rates per cell. in spikes a second.
    for i, j in enumerate(spike_trains):
        rates.append(float(len(j) / 2.0))
        cva = cv(j)
        if np.isnan(cva) or cva == 0:
            pass
            #cvs[i] = 0
            #cvsd[i] = 0
        else:
            pass
            #cvs[i] = cva
            #cvsd[i] = cva
        cvs.append(cva)
    #import pickle
    #with open(str('weight_')+str(k)+'coefficients_of_variation.p','wb') as f:
    #   pickle.dump([cvs,cvsd],f)
    import numpy
    a = numpy.asarray(cvs)
    numpy.savetxt('pickles/' + str('weight_') + str(k) +
                  'coefficients_of_variation.csv',
                  a,
                  delimiter=",")

    import numpy
    a = numpy.asarray(rates)
    numpy.savetxt('pickles/' + str('weight_') + str(k) + 'firing_of_rate.csv',
                  a,
                  delimiter=",")

    cvs = [i for i in cvs if i != 0]
    cells = [i for i in range(0, len(cvs))]

    plt.clf()
    fig, axes = plt.subplots()
    axes.set_title('Coefficient of Variation Versus Neuron')
    axes.set_xlabel('Neuron number')
    axes.set_ylabel('CV estimate')
    mcv = np.mean(cvs)
    #plt.scatter(cells,cvs)
    cvs = np.array(cvs)
    plt.scatter(index_inh, cvs[index_inh], label="inhibitory cells")
    plt.scatter(index_exc, cvs[index_exc], label="excitatory cells")
    plt.legend(loc="upper left")

    fig.tight_layout()
    plt.savefig(str('weight_') + str(k) + 'cvs_mean_' + str(mcv) + '.png')
    plt.close()

    plt.clf()
    #frequencies, power = elephant.spectral.welch_psd(ass)
    #mfreq = frequencies[np.where(power==np.max(power))[0][0]]
    #fig, axes = plt.subplots()
    axes.set_title('Firing Rate Versus Neuron Number at mean f=' +
                   str(np.mean(rates)) + str('(Spike Per Second)'))
    axes.set_xlabel('Neuron number')
    axes.set_ylabel('Spikes per second')
    rates = np.array(rates)
    plt.scatter(index_inh, rates[index_inh], label="inhibitory cells")
    plt.scatter(index_exc, rates[index_exc], label="excitatory cells")
    plt.legend(loc="upper left")
    fig.tight_layout()
    plt.savefig(str('firing_rates_per_cell_') + str(k) + str(mcv) + '.png')
    plt.close()
    '''
    import pandas as pd
    d = {'coefficent_of_variation': cvs, 'cells': cells}
    df = pd.DataFrame(data=d)

    ax = sns.regplot(x='cells', y='coefficent_of_variation', data=df)#, fit_reg=False)
    plt.savefig(str('weight_')+str(k)+'cvs_regexp_'+str(mcv)+'.png');
    plt.close()
    '''

    spike_trains = []
    ass = mdf1.analogsignals[0]
    tstop = mdf1.t_stop
    np.max(ass.times) == mdf1.t_stop
    #assert tstop == 2000
    tstop = 2000
    vm_spiking = []

    for spiketrain in mdf1.spiketrains:
        vm_spiking.append(
            mdf1.analogsignals[0][spiketrain.annotations['source_id']])
        y = np.ones_like(spiketrain) * spiketrain.annotations['source_id']

        # argument edges is the time interval you want to be considered.
        pspikes = pyspike.SpikeTrain(spiketrain, edges=(0, tstop))
        spike_trains.append(pspikes)

    # plot the spike times

    plt.clf()
    for (i, spike_train) in enumerate(spike_trains):
        plt.scatter(spike_train, i * np.ones_like(spike_train), marker='.')
    plt.xlabel('Time (ms)')
    plt.ylabel('Cell identifier')
    plt.title('Raster Plot for weight strength:' + str(k))

    plt.savefig(str('weight_') + str(k) + 'raster_plot' + '.png')
    plt.close()

    f = spk.isi_profile(spike_trains, indices=[0, 1])
    x, y = f.get_plottable_data()

    #text_file.close()
    text_file = open(str('weight_') + str(index) + 'net_out.txt', 'w')

    plt.figure()
    plt.plot(x, np.abs(y), '--k', label="ISI-profile")
    print("ISI-distance: %.8f" % f.avrg())
    f = spk.spike_profile(spike_trains, indices=[0, 1])
    x, y = f.get_plottable_data()
    plt.plot(x, y, '-b', label="SPIKE-profile")
    #print("SPIKE-distance: %.8f" % f.avrg())
    string_to_write = str("ISI-distance:") + str(f.avrg()) + str("\n\n")
    plt.title(string_to_write)
    plt.xlabel('Time $(ms)$')
    plt.ylabel('ISI distance')
    plt.legend(loc="upper left")
    plt.savefig(str('weight_') + str(k) + 'ISI_distance_bivariate' + '.png')
    plt.close()
    text_file.write(string_to_write)

    #text_file.write("SPIKE-distance: %.8f" % f.avrg())
    #text_file.write("\n\n")

    plt.figure()
    f = spk.spike_sync_profile(spike_trains[0], spike_trains[1])
    x, y = f.get_plottable_data()
    plt.plot(x, y, '--ok', label="SPIKE-SYNC profile")
    print(f, f.avrg())
    print("Average:" + str(f.avrg()))
    #print(len(f.avrg()),f.avrg())
    string_to_write = str("instantaneous synchrony:") + str(
        f.avrg()) + 'weight: ' + str(index)

    plt.title(string_to_write)
    plt.xlabel('Time $(ms)$')
    plt.ylabel('instantaneous synchrony')

    text_file.write(string_to_write)

    #text_file.write(list())

    f = spk.spike_profile(spike_trains[0], spike_trains[1])
    x, y = f.get_plottable_data()

    plt.plot(x, y, '-b', label="SPIKE-profile")
    plt.axis([0, 4000, -0.1, 1.1])
    plt.legend(loc="center right")
    plt.clf()
    plt.figure()
    plt.subplot(211)

    f = spk.spike_sync_profile(spike_trains)
    x, y = f.get_plottable_data()
    plt.plot(x, y, '-b', alpha=0.7, label="SPIKE-Sync profile")
    x1, y1 = f.get_plottable_data(averaging_window_size=50)
    plt.plot(x1, y1, '-k', lw=2.5, label="averaged SPIKE-Sync profile")
    plt.subplot(212)

    f_psth = spk.psth(spike_trains, bin_size=50.0)
    x, y = f_psth.get_plottable_data()
    plt.plot(x, y, '-k', alpha=1.0, label="PSTH")

    plt.savefig(str('weight_') + str(k) + 'multivariate_PSTH' + '.png')
    plt.close()
    plt.xlabel('Time $(ms)$')
    plt.ylabel('Spikes per bin')

    plt.clf()
    plt.figure()

    f_psth = spk.psth(spike_trains, bin_size=50.0)
    x, y = f_psth.get_plottable_data()
    plt.plot(x, y, '-k', alpha=1.0, label="PSTH")

    plt.savefig(str('weight_') + str(k) + 'exclusively_PSTH' + '.png')
    plt.close()

    plt.figure()
    isi_distance = spk.isi_distance_matrix(spike_trains)
    plt.imshow(isi_distance, interpolation='none')
    plt.title('Pairwise ISI distance, T=0-2000')
    plt.xlabel('post-synaptic neuron number')
    plt.ylabel('pre-synaptic neuron number')

    plt.title("ISI-distance")
    plt.savefig(str('weight_') + str(k) + 'ISI_distance' + '.png')
    plt.close()

    #plt.show()

    plt.figure()
    plt.clf()
    import seaborn as sns

    sns.set()
    sns.clustermap(isi_distance)  #,vmin=-,vmax=1);

    plt.savefig(str('weight_') + str(k) + 'cluster_isi_distance' + '.png')
    plt.close()

    plt.figure()
    spike_distance = spk.spike_distance_matrix(spike_trains,
                                               interval=(0, float(tstop)))

    import pickle
    with open('spike_distance_matrix.p', 'wb') as f:
        pickle.dump(spike_distance, f)

    plt.imshow(spike_distance, interpolation='none')
    plt.title("Pairwise SPIKE-distance, T=0-2000")
    plt.xlabel('post-synaptic neuron number')
    plt.ylabel('pre-synaptic neuron number')

    plt.savefig(str('weight_') + str(k) + 'spike_distance_matrix' + '.png')
    plt.close()
    plt.figure()
    plt.clf()
    sns.set()
    sns.clustermap(spike_distance)

    plt.savefig(str('weight_') + str(k) + 'cluster_spike_distance' + '.png')
    plt.close()

    plt.figure()
    spike_sync = spk.spike_sync_matrix(spike_trains,
                                       interval=(0, float(tstop)))
    plt.imshow(spike_sync, interpolation='none')
    plt.title('Pairwise Spike Synchony, T=0-2000')
    plt.xlabel('post-synaptic neuron number')
    plt.ylabel('pre-synaptic neuron number')

    import numpy
    a = numpy.asarray(spike_sync)
    numpy.savetxt("spike_sync_matrix.csv", a, delimiter=",")

    plt.figure()
    plt.clf()
    sns.clustermap(spike_sync)
    plt.savefig(
        str('weight_') + str(k) + 'cluster_spike_sync_distance' + '.png')
    plt.close()
Esempio n. 5
0
def medmaxSpikeRate(st_s, ms=200):
    mxs = []
    for st in st_s:
        n = spk.psth(st, ms).y
        mxs.append((np.max(n) - np.median(n)) / (ms / 1000))
    return np.asarray(mxs)
Esempio n. 6
0
def getPSTHs(sts, bs=100):
    single_neurons = []
    for st in sts:
        xs, ys = spk.psth(st, bs).get_plottable_data()
        single_neurons.append(ys)
    return xs, single_neurons