Esempio n. 1
0
def mnf(data):
    '''
    Description: Minimum Noise Fraction (MNF) wrapper for pysptools implementation
    Rationale: Removes noise while preserving information
    '''
    # Convert Series to ndarray
    if issubclass(type(data), pd.Series) or isinstance(data, Spectra):
        np_data = data.to_numpy()
    elif issubclass(type(data), np.ndarray):
        np_data = data
    else:
        raise ValueError("Input for MNF must inherit from pd.Series or np.ndarray")

    # Ensure 3 dimensional input for MNF
    num_dimensions = len(np_data.shape)
    if num_dimensions == 2:
        # Add arbitrary 3rd dimension
        cube_data = np.expand_dims(np_data, axis=0)
    elif num_dimensions == 3:
        cube_data = np_data
    else:
        raise ValueError("Input must be 2 or 3 dimensional")

    # Open and apply MNF module
    pysp_mnf = MNF()
    res = pysp_mnf.apply(cube_data)

    # Return result in dimensionality of input
    if num_dimensions == 2:
        return np.squeeze(res, axis=0)
    else:
        return res
Esempio n. 2
0
 def test_mnf_rotation(self):
     '''MNF rotation should achieve an expected result.'''
     file_path = os.path.join(self.test_dir, 'multi7_raster.tiff')
     ds = gdal.Open(file_path)
     nodata = ds.GetRasterBand(1).GetNoDataValue()
     hsi = ds.ReadAsArray().transpose()
     hsi[hsi == nodata] = 0
     mnf = MNF()
     hsi_post_mnf = mnf.apply(hsi)
     self.assertEqual(int(hsi_post_mnf.diagonal()[0].sum()), 132)
Esempio n. 3
0
    def test_endmember_search_by_maximum_angle(self):
        '''Should be able to search for endmembers by maximum solid angle.'''
        rast, gt, wkt = as_array(os.path.join(self.test_dir, 'multi7_raster.tiff'))
        hsi = rast.transpose()
        hsi[hsi==-9999] = 0
        mnf = MNF()
        hsi_post_mnf = mnf.apply(hsi)

        # Test that sequence/ array type works
        ref_target = (342683, 4703919)
        result = endmembers_by_maximum_angle(hsi_post_mnf.T, self.cases['Vegetation'],
            ref_target, gt=gt, wkt=wkt, dd=False)
        self.assertTrue(isinstance(result[0], np.ndarray))
Esempio n. 4
0
def mnf_rotation(rast, nodata=-9999):
    '''
    Applies the MNF rotation to an HSI data cube. Arguments:
        rast    A NumPy raster array
        nodata  The NoData value
    '''
    hsi = rast.copy().transpose()
    hsi[hsi == nodata] = 0  # Remap any lingering NoData values

    # Apply the Minimum Noise Fraction (MNF) rotation
    mnf = MNF()
    hsi_post_mnf = mnf.apply(hsi)
    hsi = None
    return hsi_post_mnf
Esempio n. 5
0
 def test_ppi_endmember_extraction(self):
     '''
     Extraction by PPI, following an MNF rotation, should achieve an
     expected result.
     '''
     file_path = os.path.join(self.test_dir, 'multi7_raster.tiff')
     ds = gdal.Open(file_path)
     ppi = PPI()
     nodata = ds.GetRasterBand(1).GetNoDataValue()
     hsi = ds.ReadAsArray().transpose()
     hsi[hsi == nodata] = 0
     mnf = MNF()
     hsi_post_mnf = mnf.apply(hsi)
     members = ppi.extract(hsi_post_mnf[..., 0:3], 3, numSkewers=10000)
     self.assertEqual(int(members.sum()), 934)