def test_derivatives_scalarQoI(self):
        systemsize = 3
        mu = mean_3dim  # np.random.randn(systemsize)
        std_dev = std_dev_3dim  # np.diag(np.random.rand(systemsize))
        jdist = cp.MvNormal(mu, std_dev)
        # Create QoI Object
        QoI = examples.Paraboloid3D(systemsize)

        # Create the Stochastic Collocation object
        deriv_dict = {
            'xi': {
                'dQoI_func': QoI.eval_QoIGradient,
                'output_dimensions': systemsize
            }
        }
        QoI_dict = {
            'paraboloid': {
                'quadrature_degree': 3,
                'reduced_collocation': False,
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
                'include_derivs': True,
                'deriv_dict': deriv_dict
            }
        }
        sc_obj = StochasticCollocation3(jdist, 'MvNormal', QoI_dict)
        sc_obj.evaluateQoIs(jdist)
        dmu_j = sc_obj.dmean(of=['paraboloid'], wrt=['xi'])
        # dvar_j = sc_obj.dvariance(of=['paraboloid'], wrt=['xi'])

        # Analytical dmu_j
        dmu_j_analytical = np.array([100 * mu[0], 50 * mu[1], 2 * mu[2]])
        err = abs(
            (dmu_j['paraboloid']['xi'] - dmu_j_analytical) / dmu_j_analytical)
        self.assertTrue((err < 1.e-12).all())
    def test_reduced_normalStochasticCollocation3D(self):

        # This is not a very good test because we are comparing the reduced collocation
        # against the analytical expected value. The only hting it tells us is that
        # the solution is within the ball park of actual value. We still need to
        # come up with a better test.

        systemsize = 3
        mu = mean_3dim  # np.random.randn(systemsize)
        std_dev = std_dev_3dim  # abs(np.diag(np.random.randn(systemsize)))
        jdist = cp.MvNormal(mu, std_dev)
        # Create QoI Object
        QoI = examples.Paraboloid3D(systemsize)
        dominant_dir = np.array([[1.0, 0.0], [0.0, 1.0], [0.0, 0.0]],
                                dtype=np.float)
        # Create the Stochastic Collocation object
        deriv_dict = {
            'xi': {
                'dQoI_func': QoI.eval_QoIGradient,
                'output_dimensions': systemsize
            }
        }
        QoI_dict = {
            'paraboloid': {
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
                'deriv_dict': deriv_dict
            }
        }
        sc_obj = StochasticCollocation2(jdist,
                                        3,
                                        'MvNormal',
                                        QoI_dict,
                                        reduced_collocation=True,
                                        dominant_dir=dominant_dir)
        sc_obj.evaluateQoIs(jdist)
        mu_js = sc_obj.mean(of=['paraboloid'])
        var_js = sc_obj.variance(of=['paraboloid'])
        # Analytical mean
        mu_j_analytical = QoI.eval_QoI_analyticalmean(mu, cp.Cov(jdist))
        err = abs((mu_js['paraboloid'][0] - mu_j_analytical) / mu_j_analytical)
        self.assertTrue(err < 1e-1)
        # Analytical variance
        var_j_analytical = QoI.eval_QoI_analyticalvariance(mu, cp.Cov(jdist))
        err = abs(
            (var_js['paraboloid'][0, 0] - var_j_analytical) / var_j_analytical)
        self.assertTrue(err < 0.01)
Esempio n. 3
0
    def test_central_difference(self):
        systemsize = 3
        QoI = examples.Paraboloid3D(systemsize)

        def func(x):
            return QoI.eval_QoI(x, np.zeros(systemsize))

        x_location = np.random.randn(3)
        # Do the finite difference
        dfval = utils.central_fd(func,
                                 x_location,
                                 output_dimensions=1,
                                 fd_pert=1.e-6)

        # Get the analytical gradient
        dfval_analytical = QoI.eval_QoIGradient(x_location, np.zeros(3))

        err = abs(dfval - dfval_analytical)
        self.assertTrue((err < 1.e-6).all())
    def test_normalStochasticCollocation3D(self):
        systemsize = 3
        mu = mean_3dim  # np.random.randn(systemsize)
        std_dev = std_dev_3dim  # np.diag(np.random.rand(systemsize))
        jdist = cp.MvNormal(mu, std_dev)
        # Create QoI Object
        QoI = examples.Paraboloid3D(systemsize)

        # Create the Stochastic Collocation object
        deriv_dict = {
            'xi': {
                'dQoI_func': QoI.eval_QoIGradient,
                'output_dimensions': systemsize
            }
        }
        QoI_dict = {
            'paraboloid': {
                'quadrature_degree': 3,
                'reduced_collocation': False,
                'QoI_func': QoI.eval_QoI,
                'output_dimensions': 1,
                'include_derivs': False,
                'deriv_dict': deriv_dict
            }
        }
        sc_obj = StochasticCollocation3(jdist, 'MvNormal', QoI_dict)
        sc_obj.evaluateQoIs(jdist)
        mu_js = sc_obj.mean(of=['paraboloid'])
        var_js = sc_obj.variance(of=['paraboloid'])

        # Analytical mean
        mu_j_analytical = QoI.eval_QoI_analyticalmean(mu, cp.Cov(jdist))
        err = abs((mu_js['paraboloid'][0] - mu_j_analytical) / mu_j_analytical)
        self.assertTrue(err < 1.e-15)

        # Analytical variance
        var_j_analytical = QoI.eval_QoI_analyticalvariance(mu, cp.Cov(jdist))
        err = abs(
            (var_js['paraboloid'][0, 0] - var_j_analytical) / var_j_analytical)
        self.assertTrue(err < 1.e-15)
from smt.surrogate_models import QP # Surrogate Modeling

from pystatreduce.new_stochastic_collocation import StochasticCollocation2
from pystatreduce.stochastic_collocation import StochasticCollocation
from pystatreduce.quantity_of_interest import QuantityOfInterest
from pystatreduce.dimension_reduction import DimensionReduction
import pystatreduce.examples as examples
import pystatreduce.utils as utils

# Create the actual QoI
systemsize = 3
mu = np.random.randn(3)
std_dev = abs(np.diag(np.random.randn(3)))
jdist = cp.MvNormal(mu, std_dev)
QoI = examples.Paraboloid3D(systemsize)

# Generate the samples for surrogate
n_surrogate_samples = int(0.5 * (systemsize + 1) * (systemsize + 2))
surrogate_samples = jdist.sample(5000, rule='R')

std_dev_vec = np.diagonal(std_dev)
new_samples = utils.check_std_dev_violation(surrogate_samples, mu, std_dev_vec, scale=1.0)
print('orig_shape = ', new_samples.shape)
new_samples = new_samples[:,0:1000]
print('new_shape = ', new_samples.shape)

"""
fval_arr = np.zeros(n_surrogate_samples)
for i in range(n_surrogate_samples):
    fval_arr[i] = QoI.eval_QoI(surrogate_samples[:,i], np.zeros(systemsize))