Esempio n. 1
0
def test_n_combinations():
    coll = [1, 2, 3, 4]
    combs = df_metrics.n_combinations(coll,
                                      n=2,
                                      must_include=[1],
                                      permutations=False)
    assert combs == [(1, 2), (1, 3), (1, 4)]

    coll = [1, 2, 3, 4]
    combs = df_metrics.n_combinations(coll, n=3, permutations=False)
    assert combs == [(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
Esempio n. 2
0
    def __init__(self,
                 other_names=('k1', 'k2', 'k3'),
                 calc_tau=False,
                 dataset_names=None,
                 metadata_template=None):

        other_names = list(other_names)
        super(IntercomparisonMetrics,
              self).__init__(other_name=other_names,
                             metadata_template=metadata_template)

        # string that splits the dataset names and metric names in the output
        # e.g. 'metric_between_dataset1_and_dataset2'
        self.ds_names_split, self.metric_ds_split = '_and_', '_between_'

        self.df_columns = ['ref'] + self.other_name

        self.calc_tau = calc_tau

        if dataset_names is None:
            self.ds_names = self.df_columns
        else:
            self.ds_names = dataset_names

        self.ds_names_lut = {}
        for name, col in zip(self.ds_names, self.df_columns):
            self.ds_names_lut[col] = name

        combis = n_combinations(self.df_columns, 2, must_include='ref')
        self.tds_names = []
        for combi in combis:
            self.tds_names.append("{1}{0}{2}".format(self.ds_names_split,
                                                     *combi))

        # metrics that are equal for all datasets
        metrics_common = ['n_obs']
        # metrics that are calculated between dataset pairs
        metrics_tds = [
            'R', 'p_R', 'rho', 'p_rho', 'BIAS', 'RMSD', 'mse', 'RSS',
            'mse_corr', 'mse_bias', 'urmsd', 'mse_var', 'tau', 'p_tau'
        ]

        metrics_common = _get_metric_template(metrics_common)
        metrics_tds = _get_metric_template(metrics_tds)

        for metric in metrics_common.keys():
            self.result_template[metric] = metrics_common[metric].copy()

        for tds_name in self.tds_names:
            split_tds_name = tds_name.split(self.ds_names_split)
            tds_name_key = \
                self.ds_names_split.join([self.ds_names_lut[split_tds_name[0]],
                                     self.ds_names_lut[split_tds_name[1]]])
            for metric in metrics_tds.keys():
                key = self.metric_ds_split.join([metric, tds_name_key])
                self.result_template[key] = metrics_tds[metric].copy()

        if not calc_tau:
            self.result_template.pop('tau', None)
            self.result_template.pop('p_tau', None)
Esempio n. 3
0
    def _make_names(self):
        tds_names, thds_names = [], []
        combis_2 = n_combinations(self.df_columns,
                                  2,
                                  must_include=[self.ref_name])
        combis_3 = n_combinations(self.df_columns,
                                  3,
                                  must_include=[self.ref_name])

        for combi in combis_2:
            tds_names.append(self.ds_names_split.join(combi))

        for combi in combis_3:
            thds_names.append("{1}{0}{2}{0}{3}".format(self.ds_names_split,
                                                       *combi))

        return tds_names, thds_names