Esempio n. 1
0
def scatter_off_2dvd_packed(dicc):
    def drop_ar(D_eq):
        if D_eq < 0.7:
            return 1.0
        elif D_eq < 1.5:
            return 1.173 - 0.5165*D_eq + 0.4698*D_eq**2 - 0.1317*D_eq**3 - \
                8.5e-3*D_eq**4
        else:
            return 1.065 - 6.25e-2*D_eq - 3.99e-3*D_eq**2 + 7.66e-4*D_eq**3 - \
                4.095e-5*D_eq**4

    d_diameters = dicc['1']
    d_densities = dicc['2']
    mypds = interpolate.interp1d(d_diameters,
                                 d_densities,
                                 bounds_error=False,
                                 fill_value=0.0)
    scatterer = Scatterer(wavelength=tmatrix_aux.wl_C,
                          m=refractive.m_w_10C[tmatrix_aux.wl_C])
    scatterer.psd_integrator = PSDIntegrator()
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / drop_ar(D)
    scatterer.psd_integrator.D_max = 10.0
    scatterer.psd_integrator.geometries = (tmatrix_aux.geom_horiz_back,
                                           tmatrix_aux.geom_horiz_forw)
    scatterer.or_pdf = orientation.gaussian_pdf(20.0)
    scatterer.orient = orientation.orient_averaged_fixed
    scatterer.psd_integrator.init_scatter_table(scatterer)
    scatterer.psd = mypds  # GammaPSD(D0=2.0, Nw=1e3, mu=4)
    radar.refl(scatterer)
    zdr = radar.Zdr(scatterer)
    z = radar.refl(scatterer)
    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    kdp = radar.Kdp(scatterer)
    A = radar.Ai(scatterer)
    return z, zdr, kdp, A
Esempio n. 2
0
    def test_fixed_orient(self):
        """Test a fixed-point orientation averaging case
        """
        tm = TMatrix(axi=2.0,
                     lam=6.5,
                     m=complex(1.5, 0.5),
                     eps=1.0 / 0.6,
                     suppress_warning=True)
        tm.or_pdf = orientation.gaussian_pdf(20.0)
        tm.orient = orientation.orient_averaged_fixed
        (S, Z) = tm.get_SZ()

        S_ref = np.array([[
            complex(6.49006090e-02, -2.42487917e-01),
            complex(1.20257317e-11, -5.23022168e-11)
        ],
                          [
                              complex(6.21754594e-12, 2.95662844e-11),
                              complex(-9.54177082e-02, 2.84758158e-01)
                          ]])

        Z_ref = np.array([[
            7.89748116e-02, -1.37649947e-02, -1.58053610e-11, -4.56295798e-12
        ], [-1.37649947e-02, 7.82237468e-02, -2.85105399e-11, -3.43475094e-12],
                          [
                              2.42108565e-11, -3.92054806e-11, -7.73426425e-02,
                              5.14654926e-03
                          ],
                          [
                              4.56792369e-12, -3.77838854e-12, -5.14654926e-03,
                              -7.65915776e-02
                          ]])

        test_relative(self, S, S_ref)
        test_relative(self, Z, Z_ref)
Esempio n. 3
0
    def test_fixed_orient(self):
        """Test a fixed-point orientation averaging case
        """
        tm = TMatrix(axi=2.0, lam=6.5, m=complex(1.5,0.5), eps=1.0/0.6,
            suppress_warning=True)
        tm.or_pdf = orientation.gaussian_pdf(20.0)
        tm.orient = orientation.orient_averaged_fixed
        (S, Z) = tm.get_SZ()
        
        S_ref = np.array(
            [[complex(6.49006090e-02, -2.42487917e-01),
              complex(1.20257317e-11, -5.23022168e-11)],
             [complex(6.21754594e-12, 2.95662844e-11),
              complex(-9.54177082e-02, 2.84758158e-01)]])

        Z_ref = np.array(
            [[7.89748116e-02, -1.37649947e-02, -1.58053610e-11, 
                -4.56295798e-12],
             [-1.37649947e-02, 7.82237468e-02, -2.85105399e-11,
                -3.43475094e-12],
             [2.42108565e-11, -3.92054806e-11, -7.73426425e-02,
                5.14654926e-03],
             [4.56792369e-12, -3.77838854e-12, -5.14654926e-03,
                -7.65915776e-02]])

        test_relative(self, S, S_ref)
        test_relative(self, Z, Z_ref)
    def _setup_scattering(self, wavelength, dsr_func, max_diameter):
        """ Internal Function to create scattering tables.

        This internal function sets up the scattering table. It takes a
        wavelength as an argument where wavelength is one of the pytmatrix
        accepted wavelengths.

        Parameters:

            wavelength : tmatrix wavelength
                PyTmatrix wavelength.
            dsr_func : function
                Drop Shape Relationship function. Several built-in are available in the `DSR` module.
            max_diameter: float
                Maximum drop diameter to generate scattering table for. 

        """
        self.scatterer = Scatterer(
            wavelength=wavelength, m=self.scattering_params["m_w"]
        )
        self.scatterer.psd_integrator = PSDIntegrator()
        self.scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / dsr_func(D)
        self.dsr_func = dsr_func
        self.scatterer.psd_integrator.D_max = max_diameter
        self.scatterer.psd_integrator.geometries = (
            tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw
        )
        self.scatterer.or_pdf = orientation.gaussian_pdf(
            self.scattering_params["canting_angle"]
        )
        self.scatterer.orient = orientation.orient_averaged_fixed
        self.scatterer.psd_integrator.init_scatter_table(self.scatterer)
        self.scattering_table_consistent = True
Esempio n. 5
0
    def _setup_scattering(self, wavelength, dsr_func):
        ''' Internal Function to create scattering tables.

        This internal function sets up the scattering table. It takes a
        wavelength as an argument where wavelength is one of the pytmatrix
        accepted wavelengths.

        Parameters:
        -----------
            wavelength : tmatrix wavelength
                PyTmatrix wavelength.
            dsr_func : function
                Drop Shape Relationship function. Several built-in are available in the `DSR` module.

        '''
        self.scatterer = Scatterer(wavelength=wavelength,
                                   m=self.m_w)
        self.scatterer.psd_integrator = PSDIntegrator()
        self.scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / \
            dsr_func(D)
        self.dsr_func = dsr_func
        self.scatterer.psd_integrator.D_max = 10.0
        self.scatterer.psd_integrator.geometries = (
            tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw)
        self.scatterer.or_pdf = orientation.gaussian_pdf(20.0)
        self.scatterer.orient = orientation.orient_averaged_fixed
        self.scatterer.psd_integrator.init_scatter_table(self.scatterer)
Esempio n. 6
0
    def test_adaptive_orient(self):
        """Test an adaptive orientation averaging case
        """
        tm = TMatrix(axi=2.0, lam=6.5, m=complex(1.5,0.5), eps=1.0/0.6,
            suppress_warning=True)
        tm.or_pdf = orientation.gaussian_pdf(20.0)
        tm.orient = orientation.orient_averaged_adaptive
        (S, Z) = tm.get_SZ()
        
        S_ref = np.array(
            [[complex(6.49005717e-02, -2.42488000e-01), 
              complex(-6.12697676e-16, -4.10602248e-15)],
             [complex(-1.50048180e-14, -1.64195485e-15), 
              complex(-9.54176591e-02, 2.84758322e-01)]])

        Z_ref = np.array(
            [[7.89677648e-02, -1.37631854e-02, -7.45412599e-15, 
             -9.23979111e-20],
            [-1.37631854e-02, 7.82165256e-02, 5.61975938e-15,
             -1.32888054e-15],
            [8.68047418e-15, 3.52110917e-15, -7.73358177e-02,
             5.14571155e-03],
            [1.31977116e-19, -3.38136420e-15, -5.14571155e-03, 
             -7.65845784e-02]])

        test_relative(self, S, S_ref)
        test_relative(self, Z, Z_ref)               
Esempio n. 7
0
def _compute_gautschi_canting(list_of_std):
    """
        Computes the quadrature points and weights for a list of standard
        deviations for the Gaussian distribution of canting angles
        Args:
            list_of_std: list of standard deviations for which a
                quadrature rule must be computed (one set of points and weights
                per standard deviation)
        Returns:
            A tuple, containing two lists, one with the quadrature points
            for every stdev, one with the quadrature weights for every
            stdev
    """
    scatt = Scatterer(radius=5.0)
    gautschi_pts = []
    gautschi_w = []
    for l in list_of_std:
        scatt.or_pdf = orientation.gaussian_pdf(std=l)
        scatt.orient = orientation.orient_averaged_fixed
        scatt._init_orient()
        gautschi_pts.append(scatt.beta_p)
        # Check if sum of weights if 1, if not set it to 1
        scatt.beta_w /= np.sum(scatt.beta_w)
        gautschi_w.append(scatt.beta_w)

    return (gautschi_pts, gautschi_w)
Esempio n. 8
0
    def _setup_scattering(self, wavelength, dsr_func):
        """ Internal Function to create scattering tables.

        This internal function sets up the scattering table. It takes a
        wavelength as an argument where wavelength is one of the pytmatrix
        accepted wavelengths.

        Parameters:
        -----------
            wavelength : tmatrix wavelength
                PyTmatrix wavelength.
            dsr_func : function
                Drop Shape Relationship function. Several built-in are available in the `DSR` module.

        """
        self.scatterer = Scatterer(wavelength=wavelength, m=self.m_w)
        self.scatterer.psd_integrator = PSDIntegrator()
        self.scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / dsr_func(
            D)
        self.dsr_func = dsr_func
        self.scatterer.psd_integrator.D_max = 10.0
        self.scatterer.psd_integrator.geometries = (
            tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw)
        self.scatterer.or_pdf = orientation.gaussian_pdf(20.0)
        self.scatterer.orient = orientation.orient_averaged_fixed
        self.scatterer.psd_integrator.init_scatter_table(self.scatterer)
Esempio n. 9
0
    def test_adaptive_orient(self):
        """Test an adaptive orientation averaging case
        """
        tm = TMatrix(axi=2.0,
                     lam=6.5,
                     m=complex(1.5, 0.5),
                     eps=1.0 / 0.6,
                     suppress_warning=True)
        tm.or_pdf = orientation.gaussian_pdf(20.0)
        tm.orient = orientation.orient_averaged_adaptive
        (S, Z) = tm.get_SZ()

        S_ref = np.array([[
            complex(6.49005717e-02, -2.42488000e-01),
            complex(-6.12697676e-16, -4.10602248e-15)
        ],
                          [
                              complex(-1.50048180e-14, -1.64195485e-15),
                              complex(-9.54176591e-02, 2.84758322e-01)
                          ]])

        Z_ref = np.array([[
            7.89677648e-02, -1.37631854e-02, -7.45412599e-15, -9.23979111e-20
        ], [-1.37631854e-02, 7.82165256e-02, 5.61975938e-15, -1.32888054e-15],
                          [
                              8.68047418e-15, 3.52110917e-15, -7.73358177e-02,
                              5.14571155e-03
                          ],
                          [
                              1.31977116e-19, -3.38136420e-15, -5.14571155e-03,
                              -7.65845784e-02
                          ]])

        test_relative(self, S, S_ref)
        test_relative(self, Z, Z_ref)
Esempio n. 10
0
    def _setup_scattering(self, wavelength, dsr_func, max_diameter):
        """ Internal Function to create scattering tables.

        This internal function sets up the scattering table. It takes a
        wavelength as an argument where wavelength is one of the pytmatrix
        accepted wavelengths.

        Parameters:

            wavelength : tmatrix wavelength
                PyTmatrix wavelength.
            dsr_func : function
                Drop Shape Relationship function. Several built-in are available in the `DSR` module.
            max_diameter: float
                Maximum drop diameter to generate scattering table for. 

        """
        self.scatterer = Scatterer(wavelength=wavelength,
                                   m=self.scattering_params["m_w"])
        self.scatterer.psd_integrator = PSDIntegrator()
        self.scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / dsr_func(
            D)
        self.dsr_func = dsr_func
        self.scatterer.psd_integrator.D_max = max_diameter
        self.scatterer.psd_integrator.geometries = (
            tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw)
        self.scatterer.or_pdf = orientation.gaussian_pdf(
            self.scattering_params["canting_angle"])
        self.scatterer.orient = orientation.orient_averaged_fixed
        self.scatterer.psd_integrator.init_scatter_table(self.scatterer)
        self.scattering_table_consistent = True
 def _setup_scattering(self, wavelength):
     self.scatterer = Scatterer(wavelength=wavelength,
                                m=refractive.m_w_10C[wavelength])
     self.scatterer.psd_integrator = PSDIntegrator()
     self.scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / \
         DSR.bc(D)
     self.scatterer.psd_integrator.D_max = 10.0
     self.scatterer.psd_integrator.geometries = (
         tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw)
     self.scatterer.or_pdf = orientation.gaussian_pdf(20.0)
     self.scatterer.orient = orientation.orient_averaged_fixed
     self.scatterer.psd_integrator.init_scatter_table(self.scatterer)
Esempio n. 12
0
    def __init__(self, wl=tmatrix_aux.wl_X, dr =1, shape='bc'):
        DSR_list = {'tb':DSR.tb, 'bc': DSR.bc, 'pb': DSR.pb}

        self.scatterer = Scatterer(wavelength=wl, m=refractive.m_w_10C[wl])
        self.scatterer.psd_integrator = PSDIntegrator()
        self.scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/DSR_list[shape](D)
        self.scatterer.psd_integrator.D_max = 10.0
        self.scatterer.psd_integrator.geometries = (tmatrix_aux.geom_horiz_back,
                tmatrix_aux.geom_horiz_forw)
        self.scatterer.or_pdf = orientation.gaussian_pdf(20.0)
        self.scatterer.orient = orientation.orient_averaged_fixed
        self.scatterer.psd_integrator.init_scatter_table(self.scatterer)
        self.dr=dr
def compute_gautschi_canting(list_of_std):
    scatt = Scatterer(radius = 5.0)
    
    gautschi_pts = []
    gautschi_w = []
    for l in list_of_std:
        scatt.or_pdf = orientation.gaussian_pdf(std=l)
        scatt.orient = orientation.orient_averaged_fixed
        scatt._init_orient()
        gautschi_pts.append(scatt.beta_p)
        gautschi_w.append(scatt.beta_w)
        
    return(gautschi_pts,gautschi_w)
Esempio n. 14
0
def _create_scatterer(wavelength, orientation_std):
    """
        Create a scatterer instance that will be used later
        Args:
            wavelength: wavelength in mm
            orientation_std: standard deviation of the Gaussian distribution
                of orientations (canting angles)
        Returns:
            scatt: a pytmatrix Scatterer class instance
    """
    scatt = Scatterer(radius=1.0, wavelength=wavelength, ndgs=10)
    scatt.or_pdf = orientation.gaussian_pdf(std=orientation_std)
    scatt.orient = orientation.orient_averaged_fixed
    return scatt
 def _setup_scattering(self, wavelength):
     self.scatterer = Scatterer(wavelength=wavelength,
                                m=refractive.m_w_10C[wavelength])
     self.scatterer.psd_integrator = PSDIntegrator()
     self.scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / \
         axis_ratio.axis_ratio_THBRS07(D)
     self.scatterer.psd_integrator.D_max = 8.0
     self.scatterer.psd_integrator.geometries = (
         tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw)
     self.scatterer.or_pdf = orientation.gaussian_pdf(20.0)
     self.scatterer.orient = orientation.orient_averaged_fixed
     print "MADE IT CC!!!!!!!!"
     self.scatterer.psd_integrator.init_scatter_table(self.scatterer)
     print "MADE IT HERE!!!!!!!!"
def setup_scatterer_rain(elev_radar):
    
    scatterer        = Scatterer()
    scatterer.psd_integrator   = psd.PSDIntegrator() 
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/drop_ar(D)   
    scatterer.alpha  = 0.0 
    scatterer.beta   = 0.0 
    scatterer.phi0   = 0.0 
    scatterer.thet   = 90.0 - elev_radar[0]
    scatterer.thet0  = 90.0 - elev_radar[0]
    scatterer.phi    = 0.0 
    geom_forw        = scatterer.get_geometry() 
    scatterer.phi    = 180.0 
    geom_back        = scatterer.get_geometry()     
    scatterer.or_pdf = orientation.gaussian_pdf(7.0)      # orientation PDF according to Bringi and Chandrasekar (2001)
    scatterer.orient = orientation.orient_averaged_fixed  # averaging method    

    return [scatterer, geom_forw, geom_back]   
Esempio n. 17
0
    def test_radar(self):
        """Test that the radar properties are computed correctly
        """
        tm = TMatrixPSD(lam=tmatrix_aux.wl_C, 
            m=refractive.m_w_10C[tmatrix_aux.wl_C], suppress_warning=True)
        tm.psd = psd.GammaPSD(D0=2.0, Nw=1e3, mu=4)        
        tm.psd_eps_func = lambda D: 1.0/drop_ar(D)
        tm.D_max = 10.0
        tm.or_pdf = orientation.gaussian_pdf(20.0)
        tm.orient = orientation.orient_averaged_fixed
        tm.geometries = (tmatrix_aux.geom_horiz_back, 
            tmatrix_aux.geom_horiz_forw)
        tm.init_scatter_table()

        radar_xsect_h = radar.radar_xsect(tm)
        Z_h = radar.refl(tm)
        Z_v = radar.refl(tm, False)
        ldr = radar.ldr(tm)
        Zdr = radar.Zdr(tm)
        delta_hv = radar.delta_hv(tm)
        rho_hv = radar.rho_hv(tm)
        tm.set_geometry(tmatrix_aux.geom_horiz_forw)
        Kdp = radar.Kdp(tm)
        A_h = radar.Ai(tm)
        A_v = radar.Ai(tm, False)

        radar_xsect_h_ref = 0.22176446239750278
        Z_h_ref = 6383.7337897299258
        Z_v_ref = 5066.721040036321
        ldr_ref = 0.0021960626647629547
        Zdr_ref = 1.2599339374097778
        delta_hv_ref = -0.00021227778705544846
        rho_hv_ref = 0.99603080460983828
        Kdp_ref = 0.19334678024367824
        A_h_ref = 0.018923976733777458
        A_v_ref = 0.016366340549483317

        for (val, ref) in zip(
            (radar_xsect_h, Z_h, Z_v, ldr, Zdr, delta_hv, rho_hv, Kdp, A_h, 
                A_v),
            (radar_xsect_h_ref, Z_h_ref, Z_v_ref, ldr_ref, Zdr_ref, 
                delta_hv_ref, rho_hv_ref, Kdp_ref, A_h_ref, A_v_ref)):
            test_relative(self, val, ref)
Esempio n. 18
0
    def test_radar(self):
        """Test that the radar properties are computed correctly
        """
        tm = TMatrixPSD(lam=tmatrix_aux.wl_C,
                        m=refractive.m_w_10C[tmatrix_aux.wl_C],
                        suppress_warning=True)
        tm.psd = psd.GammaPSD(D0=2.0, Nw=1e3, mu=4)
        tm.psd_eps_func = lambda D: 1.0 / drop_ar(D)
        tm.D_max = 10.0
        tm.or_pdf = orientation.gaussian_pdf(20.0)
        tm.orient = orientation.orient_averaged_fixed
        tm.geometries = (tmatrix_aux.geom_horiz_back,
                         tmatrix_aux.geom_horiz_forw)
        tm.init_scatter_table()

        radar_xsect_h = radar.radar_xsect(tm)
        Z_h = radar.refl(tm)
        Z_v = radar.refl(tm, False)
        ldr = radar.ldr(tm)
        Zdr = radar.Zdr(tm)
        delta_hv = radar.delta_hv(tm)
        rho_hv = radar.rho_hv(tm)
        tm.set_geometry(tmatrix_aux.geom_horiz_forw)
        Kdp = radar.Kdp(tm)
        A_h = radar.Ai(tm)
        A_v = radar.Ai(tm, False)

        radar_xsect_h_ref = 0.22176446239750278
        Z_h_ref = 6383.7337897299258
        Z_v_ref = 5066.721040036321
        ldr_ref = 0.0021960626647629547
        Zdr_ref = 1.2599339374097778
        delta_hv_ref = -0.00021227778705544846
        rho_hv_ref = 0.99603080460983828
        Kdp_ref = 0.19334678024367824
        A_h_ref = 0.018923976733777458
        A_v_ref = 0.016366340549483317

        for (val, ref) in zip(
            (radar_xsect_h, Z_h, Z_v, ldr, Zdr, delta_hv, rho_hv, Kdp, A_h,
             A_v), (radar_xsect_h_ref, Z_h_ref, Z_v_ref, ldr_ref, Zdr_ref,
                    delta_hv_ref, rho_hv_ref, Kdp_ref, A_h_ref, A_v_ref)):
            test_relative(self, val, ref)
def setup_scatterer_grau(elev_radar):
    scatterer                  = Scatterer()
    scatterer.psd_integrator   = psd.PSDIntegrator()    
    scatterer.axis_ratio       = 1.       # 1./0.8 (original); 
    scatterer.alpha  = 0.0 
    scatterer.beta   = 0.0 
    scatterer.phi0   = 0.0 
    scatterer.thet   = 90.0 - elev_radar[0]
    scatterer.thet0  = 90.0 - elev_radar[0]
    scatterer.phi    = 0.0 
    geom_forw        = scatterer.get_geometry() 
    scatterer.phi    = 180.0 
    geom_back        = scatterer.get_geometry()    
    
    # set up orientation averaging, Gaussian PDF with mean=0 and std=7 deg
    scatterer.or_pdf = orientation.gaussian_pdf(1)      # orientation PDF according to Bringi and Chandrasekar (2001)
    scatterer.orient = orientation.orient_averaged_fixed  # averaging method

    return [scatterer, geom_forw, geom_back]   
Esempio n. 20
0
def tmatrix_stuffses(dsd):
    drops = tmatrix.Scatterer(wavelength=aux.wl_C, m=ref.m_w_10C[aux.wl_C])
    drops.Kw_sqr = aux.K_w_sqr[aux.wl_C]
    drops.or_pdf = ori.gaussian_pdf(std=7.0)
    drops.orient = ori.orient_averaged_fixed
    drops.psd_integrator = psd.PSDIntegrator()
    drops.psd_integrator.D_max = 10.0
    drops.psd_integrator.axis_ratio_func = read.ar

    back = aux.geom_horiz_back
    forw = aux.geom_horiz_forw
    drops.psd_integrator.geometries = (back, forw)

    drops.psd_integrator.init_scatter_table(drops)

    psds = dsd.to_tm_series(resample=None)

    drops.set_geometry(back)

    zh = []
    zv = []
    zdr = []
    rho_hv = []
    ldr = []

    for tm_psd in psds:
        drops.psd = tm_psd
        zh.append(db(radar.refl(drops)))
        zv.append(db(radar.refl(drops, False)))
        zdr.append(db(radar.Zdr(drops)))
        rho_hv.append(radar.rho_hv(drops))
        ldr.append(db(radar.ldr(drops)))

    d = {
        'R': dsd.intensity(),
        'Zh': zh,
        'Zv': zv,
        'Zdr': zdr,
        'rho_hv': rho_hv,
        'LDR': ldr
    }
    return pd.DataFrame(data=d, index=psds.index)
Esempio n. 21
0
    def __init__(self, **kwargs):
        self.radius = 1.0
        self.radius_type = Scatterer.RADIUS_EQUAL_VOLUME
        self.wavelength = 1.0
        self.m = complex(2, 0)
        self.axis_ratio = 1.0
        self.shape = Scatterer.SHAPE_SPHEROID
        self.ddelt = 1e-3
        self.ndgs = 2
        self.alpha = 0.0
        self.beta = 0.0
        self.thet0 = 90.0
        self.thet = 90.0
        self.phi0 = 0.0
        self.phi = 180.0
        self.Kw_sqr = 0.93
        self.orient = orientation.orient_single
        self.or_pdf = orientation.gaussian_pdf()
        self.n_alpha = 5
        self.n_beta = 10

        self._tm_signature = ()
        self._scatter_signature = ()
        self._orient_signature = ()
        self._psd_signature = ()

        self.psd_integrator = None
        self.psd = None

        self.suppress_warning = kwargs["suppress_warning"] if \
            "suppress_warning" in kwargs else False

        for attr in self.__class__._deprecated_aliases:
            if attr in kwargs:
                self._warn_deprecation(attr)
                self.__dict__[self._deprecated_aliases[attr]] = kwargs[attr]
        for attr in self._attr_list:
            if attr in kwargs:
                self.__dict__[attr] = kwargs[attr]
Esempio n. 22
0
    def __init__(self, **kwargs):
        self.radius = 1.0
        self.radius_type = Scatterer.RADIUS_EQUAL_VOLUME
        self.wavelength = 1.0
        self.m = complex(2,0)
        self.axis_ratio = 1.0
        self.shape = Scatterer.SHAPE_SPHEROID
        self.ddelt = 1e-3
        self.ndgs = 2
        self.alpha = 0.0
        self.beta = 0.0
        self.thet0 = 90.0
        self.thet = 90.0
        self.phi0 = 0.0
        self.phi = 180.0
        self.Kw_sqr = 0.93
        self.orient = orientation.orient_single
        self.or_pdf = orientation.gaussian_pdf()
        self.n_alpha = 5
        self.n_beta = 10

        self._tm_signature = ()        
        self._scatter_signature = ()
        self._orient_signature = ()
        self._psd_signature = ()
        
        self.psd_integrator = None
        self.psd = None    

        self.suppress_warning = kwargs["suppress_warning"] if \
            "suppress_warning" in kwargs else False

        for attr in self.__class__._deprecated_aliases:            
            if attr in kwargs:
                self._warn_deprecation(attr)
                self.__dict__[self._deprecated_aliases[attr]] = kwargs[attr]
        for attr in self._attr_list:
            if attr in kwargs:
                self.__dict__[attr] = kwargs[attr]
Esempio n. 23
0
    def _compute_single_size(self, d):
        ar = self.aspect_ratio_func(d)
        rain = Scatterer(radius=0.5 * d,
                         wavelength=self.wl,
                         m=self.n,
                         axis_ratio=1.0 / ar)
        rain.Kw_sqr = self.K2
        if self.canting is not None:
            rain.or_pdf = orientation.gaussian_pdf(std=self.canting)
            rain.orient = orientation.orient_averaged_fixed
        # Set backward scattering for reflectivity calculations
        rain.set_geometry((self._theta0, self._theta0, 0., 180., 0., 0.))
        rxsh = radar.radar_xsect(rain, h_pol=True)
        rxsv = radar.radar_xsect(rain, h_pol=False)
        # Set forward scattering for attenuation and phase computing
        rain.set_geometry((self._theta0, self._theta0, 0., 0., 0., 0.))
        ext = scatter.ext_xsect(rain)
        skdp = radar.Kdp(rain)

        # Calculate Rayleigh approximation for reference
        ray = self.prefactor * d**6
        #print(d, rxsh, rxsv, ext, ray, skdp, ar)
        return rxsh, rxsv, ext, ray, skdp, ar
Esempio n. 24
0
def tmatrix_stuffses(dsd):
    drops = tmatrix.Scatterer(wavelength=aux.wl_C,m=ref.m_w_10C[aux.wl_C])
    drops.Kw_sqr = aux.K_w_sqr[aux.wl_C]
    drops.or_pdf = ori.gaussian_pdf(std=7.0)
    drops.orient = ori.orient_averaged_fixed
    drops.psd_integrator = psd.PSDIntegrator()
    drops.psd_integrator.D_max = 10.0
    drops.psd_integrator.axis_ratio_func = read.ar
    
    back = aux.geom_horiz_back
    forw = aux.geom_horiz_forw
    drops.psd_integrator.geometries = (back,forw)
    
    drops.psd_integrator.init_scatter_table(drops)
    
    psds = dsd.to_tm_series(resample=None)
    
    drops.set_geometry(back)
    
    zh = []
    zv = []
    zdr = []
    rho_hv = []
    ldr = []
    
    for tm_psd in psds:
        drops.psd = tm_psd
        zh.append(db(radar.refl(drops)))
        zv.append(db(radar.refl(drops,False)))
        zdr.append(db(radar.Zdr(drops)))
        rho_hv.append(radar.rho_hv(drops))
        ldr.append(db(radar.ldr(drops)))
    
    d = {'R':dsd.intensity(), 'Zh': zh, 'Zv': zv, 'Zdr': zdr, 'rho_hv': rho_hv,
         'LDR': ldr}
    return pd.DataFrame(data=d, index=psds.index)
Esempio n. 25
0
def calcScatPropOneFreq(wl, radii, as_ratio, 
                        rho, elv, ndgs=30,
                        canting=False, cantingStd=1, 
                        meanAngle=0):
    """
    Calculates the Ze of one particle
    
    Parameter
    ---------
    wl: wavelenght [mm] (single value)
    radii: radius [mm] of the particle (array[n])
    as_ratio: aspect ratio of the super particle (array[n])
    rho: density [g/mmˆ3] of the super particle (array[n])
    elv: elevation angle [°]
    ndgs: number of division points used to integrate over 
          the particle surface (default= 30 it is already high)
    canting: boolean (default = False)
    cantingStd: standard deviation of the canting angle [°] (default = 1)
    meanAngle: mean value of the canting angle [°] (default = 0)
    
    Returns
    -------
    reflect: horizontal reflectivity[mm^6/m^3] from each super particle (array[n])
    reflect_v: vertical reflectivity[mm^6/m^3] from each super particle (array[n])
    refIndex: refractive index from each super particle (array[n])
    """
    
    #---pyTmatrix setup
    # initialize a scatterer object
    scatterer = Scatterer(wavelength=wl)
    scatterer.radius_type = Scatterer.RADIUS_MAXIMUM
    scatterer.ndgs = ndgs
    scatterer.ddelta = 1e-6

    if canting==True: 
        scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd, mean=meanAngle)  
#         scatterer.orient = orientation.orient_averaged_adaptive
        scatterer.orient = orientation.orient_averaged_fixed
    
    # geometric parameters 
    scatterer.thet0 = 90. - elv
    scatterer.phi0 = 0.
    
    # geometric parameters 
    scatterer.thet = 180. - scatterer.thet0
    scatterer.phi = (180. + scatterer.phi0) % 360.

    refIndex = np.ones_like(radii, np.complex128)*np.nan
    reflect = np.ones_like(radii)*np.nan
    reflect_v = np.ones_like(radii)*np.nan
    
    for i, radius in enumerate(radii):
        
        scatterer.radius = radius
        scatterer.axis_ratio = 1./as_ratio[i]
        scatterer.m = refractive.mi(wl, rho[i])
        refIndex[i] = refractive.mi(wl, rho[i])
        reflect[i] = scatterer.wavelength**4/(np.pi**5*scatterer.Kw_sqr) * radar.radar_xsect(scatterer, True)
        reflect_v[i] = scatterer.wavelength**4/(np.pi**5*scatterer.Kw_sqr) * radar.radar_xsect(scatterer, False)
        
    del scatterer
    return reflect, reflect_v, refIndex
scatterer.phi0 = 0.0
scatterer.thet = 90.0 - theta_radar[0]
scatterer.thet0 = 90.0 - theta_radar[0]
scatterer.phi = 180.0
geom_back = scatterer.get_geometry()
scatterer.phi = 0.0
geom_forw = scatterer.get_geometry()

# so assuming perfect backscattering (no gaussian function)
# geom_tuple = (theta_radar, theta_radar, 0.0, 180.0, 0.0, 0.0)
# Set geometry to backscattering!
# CAREFUL: for Kdp need forward scattering. <-------------------------------------------------
scatterer.set_geometry(geom_back)

# set up orientation averaging, Gaussian PDF with mean=0 and std=7 deg
scatterer.or_pdf = orientation.gaussian_pdf(7.0)  # orientation PDF
scatterer.orient = orientation.orient_averaged_fixed  # averaging method

# set up PSD integration
scatterer.psd_integrator = psd.PSDIntegrator()
scatterer.psd_integrator.D_max = 5.  # maximum diameter considered
scatterer.psd_integrator.geometries = (geom_forw, geom_back)
#scatterer.psd_integrator.geometries     = (tmatrix_aux.geom_horiz_back, tmatrix_aux.geom_horiz_forw)    # ?????????
scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0 / drop_ar(
    2. * D)  # This only for rain maybe (?)

scatterer.wavelength = wavelengths[1]
scatterer.m = ref_indices_rain[1]

# initialize lookup table
scatterer.psd_integrator.init_scatter_table(scatterer)
Esempio n. 27
0
def fun(main_dir,input_data,output_data):
    os.chdir(main_dir+input_data)
    print 'loading data...',

    QRAIN    =np.load('QRAIN.npy')
    QNRAIN   =np.load('QNRAIN.npy')

    QHAIL    =np.load('QHAIL.npy')
    QNHAIL   =np.load('QNHAIL.npy')

    QSNOW    =np.load('QSNOW.npy')
    QNSNOW   =np.load('QNSNOW.npy')

    QICE     =np.load('QICE.npy')
    QNICE    =np.load('QNICE.npy')
    
    QGRAUP   =np.load('QGRAUP.npy')
    QNGRAUPEL=np.load('QNGRAUPEL.npy')

    QCLOUD   =np.load('QCLOUD.npy')
    QNCLOUD  =np.load('QNCLOUD.npy')

    RHO      =np.load('RHO.npy')

    REFL_10CM=np.load('REFL_10CM.npy')
    Pa       =np.load('Pa.npy')
    Tem      =np.load('Tem.npy')
   
    print 'finished'
    #-------------------------------------------------------------------------
    print 'start using T-matrix tools...'
 
    Qr    =    QRAIN  
    Qh    =    QHAIL  
    Qs    =    QSNOW  
    Qi    =    QICE       
    Qg    =    QGRAUP
    Qc    =    QCLOUD

    Qnr   =    QNRAIN*RHO
    Qnh   =    QNHAIL*RHO
    Qns   =    QNSNOW*RHO
    Qni   =    QNICE*RHO
    Qng   =    QNGRAUPEL*RHO
    Qnc   =    QNCLOUD*RHO
    
    
    print 'Q>=1e-10'
    Qr=funlib.data_process(Qr)
    Qh=funlib.data_process(Qh)
    Qs=funlib.data_process(Qs)
    Qi=funlib.data_process(Qi)    
    Qg=funlib.data_process(Qg)
    Qc=funlib.data_process(Qc)
    print 'finished'
    print ' '
#problem 20151010
    print 'Nt>=0.1'
    Qnr=funlib.num_process(Qnr)
    Qnh=funlib.num_process(Qnh)
    Qns=funlib.num_process(Qns)
    Qni=funlib.num_process(Qni)    
    Qng=funlib.num_process(Qng)
    Qnc=funlib.num_process(Qnc)    
    
    print 'finished'
    print ' '
    
    
    #-------------------------------------------------------------------------
    # global gamma_u
    #-------------------------------------------------------------------------
    gamma_u  =   0
    

    #-------------------------------------------------------------------------
    # starting polar calculation
    #-------------------------------------------------------------------------
    
    #-------------------------------------------------------------------------
    # setup rain
    #-------------------------------------------------------------------------
    
    [aaa,bbb,ccc]=Qr.shape    
    print('-'*60)
    print ' '
    print 'start rain...'
    start_time = datetime.datetime.now()
    #-------------------------------------------------------------------------
    # choice= 1,2,3 select rain,hail,snow density
    #-------------------------------------------------------------------------
    [n0,lamda]=funlib.setup_tmatrix(Qr,Qnr,gamma_u,RHO,1)

    scatterer = Scatterer(wavelength=tmatrix_aux.wl_X,m=refractive.m_w_10C[tmatrix_aux.wl_X])
    scatterer.psd_integrator = PSDIntegrator()
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/funlib.drop_ar(D)
    scatterer.psd_integrator.D_max=10.0
    scatterer.psd_integrator.geometries=(tmatrix_aux.geom_horiz_back,tmatrix_aux.geom_horiz_forw)
    scatterer.or_pdf = orientation.gaussian_pdf(5.0)
    scatterer.orient = orientation.orient_averaged_fixed
    scatterer.psd_integrator.init_scatter_table(scatterer)
    
    #--------------------------------------------------------------------------
    # start tmatrix
    #--------------------------------------------------------------------------    
    print('start tmatrix...')
    os.chdir(main_dir+output_data)
    
    print('start calculate...zh,zdr,zv,ldr,rhv')
    #--------------------------------------------------------------------------
    n0=n0.reshape(-1)
    lamda=lamda.reshape(-1)

    r_zh,r_zdr,r_zv,r_ldr,r_rhv=apply(funlib.cal_tm4,(n0,lamda,gamma_u,scatterer))
    
    r_zh= r_zh.reshape(aaa,bbb,ccc)
    r_zdr = r_zdr.reshape(aaa,bbb,ccc)
    r_zv  = r_zv.reshape(aaa,bbb,ccc)
    r_ldr = r_ldr.reshape(aaa,bbb,ccc)
    r_rhv = r_rhv.reshape(aaa,bbb,ccc)
    print('finished')
    
    print 'saving data...',
    np.save('r_zh.npy',r_zh)
    np.save('r_zdr.npy',r_zdr)
    np.save('r_zv.npy',r_zv)
    np.save('r_ldr.npy',r_ldr)
    np.save('r_rhv.npy',r_rhv)
    print 'finished'
    
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'    
    #------------------------------------------------------------------------------
    #   cal kdp,ai                  
    #------------------------------------------------------------------------------
    
    print('start calculate...kdp,ai')

    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    
    r_kdp,r_ai=apply(funlib.cal_tm2,(n0,lamda,gamma_u,scatterer))
    
    r_kdp = r_kdp.reshape(aaa,bbb,ccc)
    r_ai  = r_ai.reshape(aaa,bbb,ccc)    
    print 'finished'
    
    print 'saving data...',
    np.save('r_kdp.npy',r_kdp)
    np.save('r_ai.npy',r_ai)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
    #------------------------------------------------------------------
    # setup cloud
    #------------------------------------------------------------------
    [aaa,bbb,ccc]=Qc.shape
    print('-'*60)
    print ' '
    print 'start cloud...'
    #-------------------------------------------------------------------------
    # choice= 1,2,3 select rain,hail,snow density
    #-------------------------------------------------------------------------
    [n0,lamda]=funlib.setup_tmatrix(Qc,Qnc,gamma_u,RHO,1)

    scatterer = Scatterer(wavelength=tmatrix_aux.wl_X,m=refractive.m_w_10C[tmatrix_aux.wl_X])
    scatterer.psd_integrator = PSDIntegrator()
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/funlib.drop_ar(D)
    scatterer.psd_integrator.D_max=2.0
    scatterer.psd_integrator.geometries=(tmatrix_aux.geom_horiz_back,tmatrix_aux.geom_horiz_forw)
    scatterer.or_pdf = orientation.gaussian_pdf(10.0)
    scatterer.orient = orientation.orient_averaged_fixed
    scatterer.psd_integrator.init_scatter_table(scatterer)
    
    #--------------------------------------------------------------------------
    # start tmatrix
    #--------------------------------------------------------------------------
    
    print('start tmatrix...')
    os.chdir(main_dir+output_data)
    
    print('start calculate...zh,zdr,zv,ldr,rhv')
    #--------------------------------------------------------------------------
    n0=n0.reshape(-1)
    lamda=lamda.reshape(-1)

    c_zh,c_zdr,c_zv,c_ldr,c_rhv=apply(funlib.cal_tm4,(n0,lamda,gamma_u,scatterer))
    
    c_zh= c_zh.reshape(aaa,bbb,ccc)
    c_zdr = c_zdr.reshape(aaa,bbb,ccc)
    c_zv  = c_zv.reshape(aaa,bbb,ccc)
    c_ldr = c_ldr.reshape(aaa,bbb,ccc)
    c_rhv = c_rhv.reshape(aaa,bbb,ccc)
    print('finished')
    
    print 'saving data...',
    np.save('c_zh.npy',c_zh)
    np.save('c_zdr.npy',c_zdr)
    np.save('c_zv.npy',c_zv)
    np.save('c_ldr.npy',c_ldr)
    np.save('c_rhv.npy',c_rhv)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
    #------------------------------------------------------------------------------
    #   cal kdp,ai                  
    #------------------------------------------------------------------------------
    
    print('start calculate...kdp,ai')

    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    
    c_kdp,c_ai=apply(funlib.cal_tm2,(n0,lamda,gamma_u,scatterer))
    
    c_kdp = c_kdp.reshape(aaa,bbb,ccc)
    c_ai  = c_ai.reshape(aaa,bbb,ccc)    
    print 'finished'
    
    print 'saving data...',
    np.save('c_kdp.npy',c_kdp)
    np.save('c_ai.npy',c_ai)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
    #------------------------------------------------------------------
    # setup snow
    #------------------------------------------------------------------
    [aaa,bbb,ccc]=Qs.shape     
    print('-'*60)
    print ' '
    print 'start snow...'
    #-------------------------------------------------------------------------
    # choice= 1,2,3 select rain,hail,snow density
    #-------------------------------------------------------------------------
    [n0,lamda]=funlib.setup_tmatrix(Qs,Qns,gamma_u,RHO,3)

    scatterer = Scatterer(wavelength=tmatrix_aux.wl_X,m=refractive.m_w_10C[tmatrix_aux.wl_X])
    scatterer.psd_integrator = PSDIntegrator()
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/funlib.drop_ar(D)
    scatterer.psd_integrator.D_max=2.0
    scatterer.psd_integrator.geometries=(tmatrix_aux.geom_horiz_back,tmatrix_aux.geom_horiz_forw)
    scatterer.or_pdf = orientation.gaussian_pdf(20.0)
    scatterer.orient = orientation.orient_averaged_fixed
    scatterer.psd_integrator.init_scatter_table(scatterer)
    
    #--------------------------------------------------------------------------
    # start tmatrix
    #--------------------------------------------------------------------------
    
    print('start tmatrix...')
    os.chdir(main_dir+output_data)
    
    print('start calculate...zh,zdr,zv,ldr,rhv')
    #--------------------------------------------------------------------------
    n0=n0.reshape(-1)
    lamda=lamda.reshape(-1)

    s_zh,s_zdr,s_zv,s_ldr,s_rhv=apply(funlib.cal_tm4,(n0,lamda,gamma_u,scatterer))
    
    s_zh= s_zh.reshape(aaa,bbb,ccc)
    s_zdr = s_zdr.reshape(aaa,bbb,ccc)
    s_zv  = s_zv.reshape(aaa,bbb,ccc)
    s_ldr = s_ldr.reshape(aaa,bbb,ccc)
    s_rhv = s_rhv.reshape(aaa,bbb,ccc)
    print('finished')
    
    print 'saving data...',
    np.save('s_zh.npy',s_zh)
    np.save('s_zdr.npy',s_zdr)
    np.save('s_zv.npy',s_zv)
    np.save('s_ldr.npy',s_ldr)
    np.save('s_rhv.npy',s_rhv)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
#------------------------------------------------------------------------------
#   cal kdp,ai                  
#------------------------------------------------------------------------------
    
    print('start calculate...kdp,ai')

    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    
    s_kdp,s_ai=apply(funlib.cal_tm2,(n0,lamda,gamma_u,scatterer))
    
    s_kdp = s_kdp.reshape(aaa,bbb,ccc)
    s_ai  = s_ai.reshape(aaa,bbb,ccc)    
    print 'finished'
    
    print 'saving data...',
    np.save('s_kdp.npy',s_kdp)
    np.save('s_ai.npy',s_ai)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
    #------------------------------------------------------------------
    # setup ice
    #------------------------------------------------------------------
    [aaa,bbb,ccc]=Qi.shape
    print('-'*60)
    print ' '
    print 'start ice...'
    #-------------------------------------------------------------------------
    # choice= 1,2,3 select rain,hail,snow density
    #-------------------------------------------------------------------------
    [n0,lamda]=funlib.setup_tmatrix(Qs,Qns,gamma_u,RHO,2)

    scatterer = Scatterer(wavelength=tmatrix_aux.wl_X,m=refractive.m_w_0C[tmatrix_aux.wl_X])
    scatterer.psd_integrator = PSDIntegrator()
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/funlib.drop_ar(D)
    scatterer.psd_integrator.D_max=2.0
    scatterer.psd_integrator.geometries=(tmatrix_aux.geom_horiz_back,tmatrix_aux.geom_horiz_forw)
    scatterer.or_pdf = orientation.gaussian_pdf(2.0)
    scatterer.orient = orientation.orient_averaged_fixed
    scatterer.psd_integrator.init_scatter_table(scatterer)
    
    #--------------------------------------------------------------------------
    # start tmatrix
    #--------------------------------------------------------------------------
    
    print('start tmatrix...')
    os.chdir(main_dir+output_data)
    
    print('start calculate...zh,zdr,zv,ldr,rhv')
    #--------------------------------------------------------------------------
    n0=n0.reshape(-1)
    lamda=lamda.reshape(-1)

    i_zh,i_zdr,i_zv,i_ldr,i_rhv=apply(funlib.cal_tm4,(n0,lamda,gamma_u,scatterer))
    
    i_zh= i_zh.reshape(aaa,bbb,ccc)
    #i_zh= lg_zh(i_zh)
    i_zdr = i_zdr.reshape(aaa,bbb,ccc)
    i_zv  = i_zv.reshape(aaa,bbb,ccc)
    i_ldr = i_ldr.reshape(aaa,bbb,ccc)
    i_rhv = i_rhv.reshape(aaa,bbb,ccc)
    print('finished')
    
    print 'saving data...',
    np.save('i_zh.npy',i_zh)
    np.save('i_zdr.npy',i_zdr)
    np.save('i_zv.npy',i_zv)
    np.save('i_ldr.npy',i_ldr)
    np.save('i_rhv.npy',i_rhv)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
#------------------------------------------------------------------------------
#   cal kdp,ai                  
#------------------------------------------------------------------------------
    
    print('start calculate...kdp,ai')

    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    
    i_kdp,i_ai=apply(funlib.cal_tm2,(n0,lamda,gamma_u,scatterer))
    
    i_kdp = i_kdp.reshape(aaa,bbb,ccc)
    i_ai  = i_ai.reshape(aaa,bbb,ccc)    
    print 'finished'
    
    print 'saving data...',
    np.save('i_kdp.npy',i_kdp)
    np.save('i_ai.npy',i_ai)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
    #------------------------------------------------------------------
    # setup graupel
    #------------------------------------------------------------------
    [aaa,bbb,ccc]=Qg.shape
    print('-'*60)
    print ' '
    print 'start graupel...'
    #-------------------------------------------------------------------------
    # choice= 1,2,3 select rain,hail,snow density
    #-------------------------------------------------------------------------
    [n0,lamda]=funlib.setup_tmatrix(Qg,Qng,gamma_u,RHO,2)

    scatterer = Scatterer(wavelength=tmatrix_aux.wl_X,m=refractive.m_w_10C[tmatrix_aux.wl_X])
    scatterer.psd_integrator = PSDIntegrator()
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/funlib.drop_ar(D)
    scatterer.psd_integrator.D_max=2.0
    scatterer.psd_integrator.geometries=(tmatrix_aux.geom_horiz_back,tmatrix_aux.geom_horiz_forw)
    scatterer.or_pdf = orientation.gaussian_pdf(2.0)
    scatterer.orient = orientation.orient_averaged_fixed
    scatterer.psd_integrator.init_scatter_table(scatterer)
    
    #--------------------------------------------------------------------------
    # start tmatrix
    #--------------------------------------------------------------------------
    
    print('start tmatrix...')
    os.chdir(main_dir+output_data)
    
    print('start calculate...zh,zdr,zv,ldr,rhv')
    #--------------------------------------------------------------------------
    n0=n0.reshape(-1)
    lamda=lamda.reshape(-1)

    g_zh,g_zdr,g_zv,g_ldr,g_rhv=apply(funlib.cal_tm4,(n0,lamda,gamma_u,scatterer))
    
    g_zh= g_zh.reshape(aaa,bbb,ccc)
    #g_zh= lg_zh(g_zh)
    g_zdr = g_zdr.reshape(aaa,bbb,ccc)
    g_zv  = g_zv.reshape(aaa,bbb,ccc)
    g_ldr = g_ldr.reshape(aaa,bbb,ccc)
    g_rhv = g_rhv.reshape(aaa,bbb,ccc)
    print('finished')
    
    print 'saving data...',
    np.save('g_zh.npy',g_zh)
    np.save('g_zdr.npy',g_zdr)
    np.save('g_zv.npy',g_zv)
    np.save('g_ldr.npy',g_ldr)
    np.save('g_rhv.npy',g_rhv)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
#------------------------------------------------------------------------------
#   cal kdp,ai                  
#------------------------------------------------------------------------------
    
    print('start calculate...kdp,ai')

    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    
    g_kdp,g_ai=apply(funlib.cal_tm2,(n0,lamda,gamma_u,scatterer))
    
    g_kdp = g_kdp.reshape(aaa,bbb,ccc)
    g_ai  = g_ai.reshape(aaa,bbb,ccc)    
    print 'finished'
    
    print 'saving data...',
    np.save('g_kdp.npy',g_kdp)
    np.save('g_ai.npy',g_ai)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
    #------------------------------------------------------------------
    # setup hail
    #------------------------------------------------------------------
    [aaa,bbb,ccc]=Qh.shape
    print('-'*60)
    print ' '
    print 'start hail...'
    #-------------------------------------------------------------------------
    # choice= 1,2,3 select rain,hail,snow density
    #-------------------------------------------------------------------------
    [n0,lamda]=funlib.setup_tmatrix(Qh,Qnh,gamma_u,RHO,2)

    scatterer = Scatterer(wavelength=tmatrix_aux.wl_X,m=refractive.m_w_10C[tmatrix_aux.wl_X])
    scatterer.psd_integrator = PSDIntegrator()
    scatterer.psd_integrator.axis_ratio_func = lambda D: 1.0/funlib.drop_ar(D)
    scatterer.psd_integrator.D_max=5.0
    scatterer.psd_integrator.geometries=(tmatrix_aux.geom_horiz_back,tmatrix_aux.geom_horiz_forw)
    scatterer.or_pdf = orientation.gaussian_pdf(5.0)
    scatterer.orient = orientation.orient_averaged_fixed
    scatterer.psd_integrator.init_scatter_table(scatterer)
    
    #--------------------------------------------------------------------------
    # start tmatrix
    #--------------------------------------------------------------------------
    
    print('start tmatrix...')
    os.chdir(main_dir+output_data)
    
    print('start calculate...zh,zdr,zv,ldr,rhv')
    #--------------------------------------------------------------------------
    n0=n0.reshape(-1)
    lamda=lamda.reshape(-1)

    h_zh,h_zdr,h_zv,h_ldr,h_rhv=apply(funlib.cal_tm4,(n0,lamda,gamma_u,scatterer))
    
    h_zh= h_zh.reshape(aaa,bbb,ccc)
    #g_zh= lg_zh(g_zh)
    h_zdr = h_zdr.reshape(aaa,bbb,ccc)
    h_zv  = h_zv.reshape(aaa,bbb,ccc)
    h_ldr = h_ldr.reshape(aaa,bbb,ccc)
    h_rhv = h_rhv.reshape(aaa,bbb,ccc)
    print('finished')
    
    print 'saving data...',
    np.save('h_zh.npy',h_zh)
    np.save('h_zdr.npy',h_zdr)
    np.save('h_zv.npy',h_zv)
    np.save('h_ldr.npy',h_ldr)
    np.save('h_rhv.npy',h_rhv)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
#------------------------------------------------------------------------------
#   cal kdp,ai                  
#------------------------------------------------------------------------------
    
    print('start calculate...kdp,ai')

    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    
    h_kdp,h_ai=apply(funlib.cal_tm2,(n0,lamda,gamma_u,scatterer))
    
    h_kdp = h_kdp.reshape(aaa,bbb,ccc)
    h_ai  = h_ai.reshape(aaa,bbb,ccc)    
    print 'finished'
    
    print 'saving data...',
    np.save('h_kdp.npy',h_kdp)
    np.save('h_ai.npy',h_ai)
    print 'finished'
    print 'used time:'+str((datetime.datetime.now()-start_time).seconds)+' s'
    
    print('-'*60)
    return
def create_scatterer(wavelength,orientation_std):
    
    scatt = Scatterer(radius = 1.0, wavelength = wavelength)
    scatt.or_pdf = orientation.gaussian_pdf(std=orientation_std)
    scatt.orient = orientation.orient_averaged_fixed
    return scatt
Esempio n. 29
0
def calcScatPropOneFreq(wl,
                        radii,
                        as_ratio,
                        rho,
                        elv,
                        ndgs=30,
                        canting=False,
                        cantingStd=1,
                        meanAngle=0):
    """
    Calculates the Ze at H and V polarization, Kdp for one wavelength
    TODO: LDR???
    
    Parameters
    ----------
    wl: wavelenght [mm] (single value)
    radii: radius [mm] of the particle (array[n])
    as_ratio: aspect ratio of the super particle (array[n])
    rho: density [g/mmˆ3] of the super particle (array[n])
    elv: elevation angle [°]
    ndgs: division points used to integrate over the particle surface
    canting: boolean (default = False)
    cantingStd: standard deviation of the canting angle [°] (default = 1)
    meanAngle: mean value of the canting angle [°] (default = 0)
    
    Returns
    -------
    reflect_h: super particle horizontal reflectivity[mm^6/m^3] (array[n])
    reflect_v: super particle vertical reflectivity[mm^6/m^3] (array[n])
    refIndex: refractive index from each super particle (array[n])
    kdp: calculated kdp from each particle (array[n])
    """

    #---pyTmatrix setup
    # initialize a scatterer object
    scatterer = Scatterer(wavelength=wl)
    scatterer.radius_type = Scatterer.RADIUS_MAXIMUM
    scatterer.ndgs = ndgs
    scatterer.ddelta = 1e-6

    if canting == True:
        scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd,
                                                    mean=meanAngle)
        #         scatterer.orient = orientation.orient_averaged_adaptive
        scatterer.orient = orientation.orient_averaged_fixed

    # geometric parameters - incident direction
    scatterer.thet0 = 90. - elv
    scatterer.phi0 = 0.

    # parameters for backscattering
    refIndex = np.ones_like(radii, np.complex128) * np.nan
    reflect_h = np.ones_like(radii) * np.nan
    reflect_v = np.ones_like(radii) * np.nan

    # S matrix for Kdp
    sMat = np.ones_like(radii) * np.nan

    for i, radius in enumerate(radii):
        # A quick function to save the distribution of values used in the test
        #with open('/home/dori/table_McRadar.txt', 'a') as f:
        #    f.write('{0:f} {1:f} {2:f} {3:f} {4:f} {5:f} {6:f}\n'.format(wl, elv,
        #                                                                 meanAngle,
        #                                                                 cantingStd,
        #                                                                 radius,
        #                                                                 rho[i],
        #                                                                 as_ratio[i]))
        # scattering geometry backward
        scatterer.thet = 180. - scatterer.thet0  # Is it????
        scatterer.phi = (180. + scatterer.phi0) % 360.
        scatterer.radius = radius
        scatterer.axis_ratio = 1. / as_ratio[i]
        scatterer.m = refractive.mi(wl, rho[i])
        refIndex[i] = refractive.mi(wl, rho[i])
        reflect_h[i] = scatterer.wavelength**4 / (
            np.pi**5 * scatterer.Kw_sqr) * radar.radar_xsect(
                scatterer,
                True)  # Kwsqrt is not correct by default at every frequency
        reflect_v[i] = scatterer.wavelength**4 / (
            np.pi**5 * scatterer.Kw_sqr) * radar.radar_xsect(scatterer, False)

        # scattering geometry forward
        scatterer.thet = scatterer.thet0
        scatterer.phi = (scatterer.phi0) % 360.  #KDP geometry
        S = scatterer.get_S()
        sMat[i] = (S[1, 1] - S[0, 0]).real
    kdp = 1e-3 * (180.0 / np.pi) * scatterer.wavelength * sMat

    del scatterer  # TODO: Evaluate the chance to have one Scatterer object already initiated instead of having it locally
    return reflect_h, reflect_v, refIndex, kdp
Esempio n. 30
0
    #scatterer.psd_integrator.num_points = 16
    #scatterer.psd_integrator.geometries = ()
    geometries = ()

    ize = np.linspace(0, 90, niZe) + 90
    sze = np.linspace(0, 180, nsZe)
    saz = np.linspace(0, 180, nsAz)
    sze, ize, saz = np.meshgrid(sze, ize, saz)

    # for i in range(nsAz):
    #     for j in range(nsZe):
    #         for k in range(niZe):
    #             print(i,j,k)
    #             #scatterer.psd_integrator.geometries += ((k*22.5+90, j, 0.0, i, 0.0, 0.0),)
    #             geometries += ((k*22.5+90, j, 0.0, i, 0.0, 0.0),)
    scatterer.or_pdf = orientation.gaussian_pdf(std=30.0)
    # scatterer.orient = orientation.orient_averaged_fixed
    # start = timer()
    # scatterer.psd_integrator.init_scatter_table(scatterer,verbose=True)
    # end = timer()
    # time = end-start
    # print(time)
    #scatterer.psd = ExponentialPSD(N0 = 1e2,Lambda= 0.025,D_max=100.0)

    it = np.nditer(sze, flags=['multi_index'])
    for x in it:
        geom = (ize[it.multi_index], sze[it.multi_index], 0.0,
                saz[it.multi_index], 0.0, 0.0)
        scatterer.set_geometry(geom)
        idx = (n, ) + it.multi_index
        # refh[it.multi_index] = 10*np.log10(radar.refl(scatterer))
Esempio n. 31
0
            for index, row in data.iterrows():
                coords = Z11.sel(wavelength=row.wl,
                                 size=row.radius,
                                 aspect=row.as_ratio,
                                 density=row.rho,
                                 elevation=row.elv,
                                 canting=row.cantingStd,
                                 method='nearest').coords
                if np.isnan(Z11.loc[coords]):
                    print(index, i)
                    i = i + 1
                    scatterer.wavelength = row.wl
                    scatterer.radius = row.radius
                    scatterer.axis_ratio = 1. / row.as_ratio
                    scatterer.m = refractive.mi(row.wl, row.rho)
                    scatterer.or_pdf = orientation.gaussian_pdf(
                        std=row.cantingStd, mean=int(row.as_ratio > 1) * 90.0)
                    # scatterer.orient = orientation.orient_averaged_adaptive
                    scatterer.orient = orientation.orient_averaged_fixed
                    scatterer.thet0 = 90. - row.elv
                    scatterer.phi0 = 0.

                    # First, backward
                    scatterer.thet = 180.0 - scatterer.thet0
                    scatterer.phi = (180. + scatterer.phi0) % 360.
                    Zmat = scatterer.get_Z()
                    Z11.load().loc[coords] = Zmat[0, 0]
                    Z22.load().loc[coords] = Zmat[1, 1]
                    Z21.load().loc[coords] = Zmat[1, 0]
                    Z12.load().loc[coords] = Zmat[0, 1]
                    Z33.load().loc[coords] = Zmat[2, 2]
                    Z34.load().loc[coords] = Zmat[2, 3]
Esempio n. 32
0
def calcScatPropOneFreq(wl,
                        radii,
                        as_ratio,
                        rho,
                        elv,
                        ndgs=30,
                        canting=False,
                        cantingStd=1,
                        meanAngle=0,
                        safeTmatrix=False):
    """
    Calculates the Ze at H and V polarization, Kdp for one wavelength
    TODO: LDR???
    
    Parameters
    ----------
    wl: wavelength [mm] (single value)
    radii: radius [mm] of the particle (array[n])
    as_ratio: aspect ratio of the super particle (array[n])
    rho: density [g/mmˆ3] of the super particle (array[n])
    elv: elevation angle [°]
    ndgs: division points used to integrate over the particle surface
    canting: boolean (default = False)
    cantingStd: standard deviation of the canting angle [°] (default = 1)
    meanAngle: mean value of the canting angle [°] (default = 0)
    
    Returns
    -------
    reflect_h: super particle horizontal reflectivity[mm^6/m^3] (array[n])
    reflect_v: super particle vertical reflectivity[mm^6/m^3] (array[n])
    refIndex: refractive index from each super particle (array[n])
    kdp: calculated kdp from each particle (array[n])
    """

    #---pyTmatrix setup
    # initialize a scatterer object
    scatterer = Scatterer(wavelength=wl)
    scatterer.radius_type = Scatterer.RADIUS_MAXIMUM
    scatterer.ndgs = ndgs
    scatterer.ddelta = 1e-6

    if canting == True:
        scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd,
                                                    mean=meanAngle)
        #         scatterer.orient = orientation.orient_averaged_adaptive
        scatterer.orient = orientation.orient_averaged_fixed

    # geometric parameters - incident direction
    scatterer.thet0 = 90. - elv
    scatterer.phi0 = 0.

    # parameters for backscattering
    refIndex = np.ones_like(radii, np.complex128) * np.nan
    reflect_h = np.ones_like(radii) * np.nan
    reflect_v = np.ones_like(radii) * np.nan

    # S matrix for Kdp
    sMat = np.ones_like(radii) * np.nan

    for i, radius in enumerate(radii[::5]):  #TODO remove [::5]
        # A quick function to save the distribution of values used in the test
        #with open('/home/dori/table_McRadar.txt', 'a') as f:
        #    f.write('{0:f} {1:f} {2:f} {3:f} {4:f} {5:f} {6:f}\n'.format(wl, elv,
        #                                                                 meanAngle,
        #                                                                 cantingStd,
        #                                                                 radius,
        #                                                                 rho[i],
        #                                                                 as_ratio[i]))
        # scattering geometry backward
        # radius = 100.0 # just a test to force nans

        scatterer.thet = 180. - scatterer.thet0
        scatterer.phi = (180. + scatterer.phi0) % 360.
        scatterer.radius = radius
        scatterer.axis_ratio = 1. / as_ratio[i]
        scatterer.m = refractive.mi(wl, rho[i])
        refIndex[i] = refractive.mi(wl, rho[i])

        if safeTmatrix:
            inputs = [
                str(scatterer.radius),
                str(scatterer.wavelength),
                str(scatterer.m),
                str(scatterer.axis_ratio),
                str(int(canting)),
                str(cantingStd),
                str(meanAngle),
                str(ndgs),
                str(scatterer.thet0),
                str(scatterer.phi0)
            ]
            arguments = ' '.join(inputs)
            a = subprocess.run(
                ['spheroidMcRadar'] +
                inputs,  # this script should be installed by McRadar
                capture_output=True)
            # print(str(a))
            try:
                back_hh, back_vv, sMatrix, _ = str(
                    a.stdout).split('Results ')[-1].split()
                back_hh = float(back_hh)
                back_vv = float(back_vv)
                sMatrix = float(sMatrix)
            except:
                back_hh = np.nan
                back_vv = np.nan
                sMatrix = np.nan
            # print(back_hh, radar.radar_xsect(scatterer, True))
            # print(back_vv, radar.radar_xsect(scatterer, False))
            reflect_h[i] = scatterer.wavelength**4 / (
                np.pi**5 * scatterer.Kw_sqr
            ) * back_hh  # radar.radar_xsect(scatterer, True)  # Kwsqrt is not correct by default at every frequency
            reflect_v[i] = scatterer.wavelength**4 / (
                np.pi**5 * scatterer.Kw_sqr
            ) * back_vv  # radar.radar_xsect(scatterer, False)

            # scattering geometry forward
            # scatterer.thet = scatterer.thet0
            # scatterer.phi = (scatterer.phi0) % 360. #KDP geometry
            # S = scatterer.get_S()
            sMat[i] = sMatrix  # (S[1,1]-S[0,0]).real
            # print(sMatrix, sMat[i])
            # print(sMatrix)
        else:

            reflect_h[i] = scatterer.wavelength**4 / (
                np.pi**5 * scatterer.Kw_sqr) * radar.radar_xsect(
                    scatterer, True
                )  # Kwsqrt is not correct by default at every frequency
            reflect_v[i] = scatterer.wavelength**4 / (
                np.pi**5 * scatterer.Kw_sqr) * radar.radar_xsect(
                    scatterer, False)

            # scattering geometry forward
            scatterer.thet = scatterer.thet0
            scatterer.phi = (scatterer.phi0) % 360.  #KDP geometry
            S = scatterer.get_S()
            sMat[i] = (S[1, 1] - S[0, 0]).real

    kdp = 1e-3 * (180.0 / np.pi) * scatterer.wavelength * sMat

    del scatterer  # TODO: Evaluate the chance to have one Scatterer object already initiated instead of having it locally
    return reflect_h, reflect_v, refIndex, kdp
Esempio n. 33
0
    plt.figure()
    plt.plot(D,a1.a*D**a1.b)
    plt.plot(D,a2.a*D**a2.b)    
#    
    plt.figure()
    plt.plot(D,diel1(D),D,diel2(D))
    
    
    
    from pytmatrix import orientation
    from pytmatrix.tmatrix import Scatterer
    
    f=9.41
    wavelength=constants.C/(f*1E09)*1000 # in mm
    scatt = Scatterer(radius = 1.0, wavelength = wavelength)
    scatt.or_pdf = orientation.gaussian_pdf(std=20)
    scatt.orient = orientation.orient_averaged_fixed
    
    list_SZ_1=[]
    list_SZ_2=[]
    
    elevation = 5
    m_func1= a1.get_m_func(270,f)    
    m_func2= a2.get_m_func(270,f)     
    geom_back=(90-elevation, 180-(90-elevation), 0., 180, 0.0,0.0)
    geom_forw=(90-elevation, 90-elevation, 0., 0.0, 0.0,0.0)
    

    for i,d in enumerate(D):
        
        ar = a1.get_axis_ratio(d)
Esempio n. 34
0
if __name__ == "__main__":
    TIME_UNIT = "seconds since 1970-01-01 00:00"
    OUTDIR = "."

    # Radar band in mm.
    flist = glob.glob(
        "/g/data/kl02/vhl548/data_for_others/disdro2/*psd_na.txt")
    for infile in flist:
        for RADAR_BAND in [
                tmatrix_aux.wl_S, tmatrix_aux.wl_C, tmatrix_aux.wl_X,
                tmatrix_aux.wl_Ku, tmatrix_aux.wl_Ka, tmatrix_aux.wl_W
        ]:

            print("Looking at wavelength {} mm.".format(RADAR_BAND))
            SCATTERER = Scatterer(wavelength=RADAR_BAND,
                                  m=refractive.m_w_10C[RADAR_BAND])
            SCATTERER.psd_integrator = PSDIntegrator()
            SCATTERER.psd_integrator.axis_ratio_func = lambda D: drop_axis_ratio(
                D)
            SCATTERER.psd_integrator.D_max = 8
            SCATTERER.psd_integrator.geometries = (
                tmatrix_aux.geom_horiz_back,
                tmatrix_aux.geom_horiz_forw,
            )
            SCATTERER.or_pdf = orientation.gaussian_pdf(10.0)
            SCATTERER.orient = orientation.orient_averaged_fixed
            SCATTERER.psd_integrator.init_scatter_table(SCATTERER)

            main(infile, RADAR_BAND)
Esempio n. 35
0
def calcKdpPropOneFreq(wl,
                       radii,
                       as_ratio,
                       rho,
                       elv,
                       ndgs=2,
                       canting=False,
                       cantingStd=1,
                       meanAngle=0):
    """
    Calculation of the KDP of one particle
    
    Parameters
    ----------
    wl: wavelength [mm] (single value)
    radii: radius [mm] of the particle (array[n])
    as_ratio: aspect ratio of the super particle (array[n])
    rho: density [g/mmˆ3] of the super particle (array[n])
    elv: elevation angle [°]
    ndgs: number of division points used to integrate over 
       the particle surface (default= 30 it is already high)
    canting: boolean (default = False)
    cantingStd: standard deviation of the canting angle [°] (default = 1)
    meanAngle: mean value of the canting angle [°] (default = 0)
    
    Returns
    -------
    kdp: calculated kdp from each particle (array[n])
    """

    scatterer = Scatterer(wavelength=wl)  #, axis_ratio=1./as_ratio)
    scatterer.radius_type = Scatterer.RADIUS_MAXIMUM
    scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
    scatterer.ndgs = ndgs

    if canting == True:
        scatterer.or_pdf = orientation.gaussian_pdf(std=cantingStd,
                                                    mean=meanAngle)
        #scatterer.orient = orientation.orient_averaged_adaptive
        scatterer.orient = orientation.orient_averaged_fixed

    # geometric parameters
    scatterer.thet0 = 90. - elv
    scatterer.phi0 = 0.

    # geometric parameters
    scatterer.thet = scatterer.thet0
    scatterer.phi = (scatterer.phi0) % 360.  #KDP geometry

    sMat = np.ones_like(radii) * np.nan

    for i, radius in enumerate(radii):

        scatterer.axis_ratio = 1. / as_ratio[i]
        scatterer.radius = radius
        scatterer.m = refractive.mi(wl, rho[i])
        S = scatterer.get_S()
        sMat[i] = (S[1, 1] - S[0, 0]).real

    kdp = 1e-3 * (180.0 / np.pi) * scatterer.wavelength * (sMat)
    return kdp