Esempio n. 1
0
 def parallelRun(self,verbose=False):
 
     import pytom_mpi
     from pytom.parallel.messages import StatusMessage,MessageError
     from pytom.basic.exceptions import ParameterError
     from pytom.basic.structures import PyTomClassError
     
     end = False
     
     if not pytom_mpi.isInitialised():
         pytom_mpi.init()
     
     mpi_id = pytom_mpi.rank()
     
     while not end:            
                    
         #listen for messages
         
         mpi_msgString = pytom_mpi.receive()
         
         if verbose:
             print(mpi_msgString)
             
         try:
             
             
             #wait for job and start processing
             msg = ReconstructionMessage()
             msg.fromStr(mpi_msgString)
             
             
             
             self.setJob(msg)
             
             self.run()
             
             
             resultMsg = StatusMessage(mpi_id,'0')
             resultMsg.setStatus('Finished')
             
             pytom_mpi.send(str(resultMsg),0)
            
                            
             
         except (MessageError,PyTomClassError,ParameterError):
                 try:
                     #as StatusMessage and finish
                     msg = StatusMessage('','')
                     msg.fromStr(mpi_msgString)
                     if msg.getStatus() == 'End':
                         end = True
                                            
                     
                 except (MessageError,PyTomClassError,ParameterError):
                     #print mpi_msgString
                     #raise MessageError('Message unknown!')
                     print('Error parsing message. Message either unknown or invalid.')
                     assert False
         except:
                 print('wild except')
Esempio n. 2
0
    def parallelEnd(self, verbose=True):
        """
        parallelEnd: End the parallel running of the program.
        """
        import pytom_mpi
        from pytom.parallel.messages import StatusMessage

        if verbose == True:
            print(self.name + ': sending end messages to all')

        for i in range(pytom_mpi.size()):
            msg = StatusMessage(str(self.mpi_id), str(i))
            msg.setStatus("End")
            pytom_mpi.send(str(msg), i)
 def end(self, verbose=False):
     if verbose == True:
         print(self.node_name + ': sending end messages to others')
     
     from pytom.parallel.messages import StatusMessage
     
     mpi_numberNodes = pytom_mpi.size()
     mpi_myid = pytom_mpi.rank()
     
     for i in range(1, mpi_numberNodes):
         msg = StatusMessage(str(mpi_myid),str(i))
         msg.setStatus("End")
         pytom_mpi.send(str(msg),i)
     
     pytom_mpi.finalise()
Esempio n. 4
0
    def run(self):
        
        import pytom_mpi
        from pytom.parallel.messages import StatusMessage,MessageError
        from pytom.basic.exceptions import ParameterError
        from pytom.basic.structures import PyTomClassError
        
        if not pytom_mpi.isInitialised():
            pytom_mpi.init()

        end = False

        while not end:
            try:
                mpi_msgString = pytom_mpi.receive()
                msg = GrowingAverageJobMessage('','')
                msg.fromStr(mpi_msgString)
                
                
                self.fromJob(msg.getJob())
                self._run()
                
                returnMessage = GrowingAverageResultMessage(self._mpiId,0)
                
                pytom_mpi.send(returnMessage.__str__(),0)
                
            except (MessageError,PyTomClassError,ParameterError,IndexError):
                        #as StatusMessage and finish
                        msg = StatusMessage('','')
                        msg.fromStr(mpi_msgString)
                        if msg.getStatus() == 'End':
                            end = True
Esempio n. 5
0
    def parallelEnd(self):
        """
        parallelEnd : Sends status message = end to all workers. All workers will terminate upon receiving this message.
        @author: Thomas Hrabe
        """
        import pytom_mpi
        from pytom.parallel.messages import StatusMessage

        if not pytom_mpi.isInitialised():
            pytom_mpi.init()

        mpi_myid = pytom_mpi.rank()

        mpi_numberNodes = pytom_mpi.size()
        for i in range(1, mpi_numberNodes):
            msg = StatusMessage(mpi_myid.__str__(), i.__str__())
            msg.setStatus("End")
            pytom_mpi.send(msg.__str__(), i)
Esempio n. 6
0
    def parallelEnd(self, verbose=True):
        """
        parallelEnd : Sends status message = end to all workers.
        @param verbose: verbose mode
        @type verbose: boolean
        """

        if verbose == True:
            print('Manager: sending end messages to workers')

        import pytom_mpi
        from pytom.parallel.messages import StatusMessage

        mpi_numberNodes = pytom_mpi.size()
        mpi_myid = pytom_mpi.rank()

        for i in range(1, mpi_numberNodes):
            msg = StatusMessage(str(mpi_myid), str(i))
            msg.setStatus("End")
            pytom_mpi.send(str(msg), i)
Esempio n. 7
0
    def parallelRun(self, verbose=True, **kwargs):
        '''
        parallelRun: Run the worker in parallel status and send the result message back
        @param verbose: verbose mode
        @type verbose: boolean
        '''

        from pytom.parallel.messages import StatusMessage, MessageError
        from pytom.basic.exceptions import ParameterError
        from pytom.basic.structures import PyTomClassError

        end = False

        while not end:
            # get the message string
            mpi_msgString = getMsgStr()

            try:
                msg = self.getJobMsg(mpi_msgString)
                self.jobFromMsg(msg)

                if verbose == True:
                    print(self.name + ': running...')
                [resV, orientV, sumV, sqrV] = self.run(verbose, moreInfo=True)

                # write the result volume back to the disk
                resFilename = self.name + '_job' + str(self.jobID) + '_res.em'
                orientFilename = self.name + '_job' + str(
                    self.jobID) + '_orient.em'
                resV.write(resFilename)
                orientV.write(orientFilename)

                if sumV and sqrV:
                    sumFilename = self.name + '_job' + str(
                        self.jobID) + '_sum.em'
                    sqrFilename = self.name + '_job' + str(
                        self.jobID) + '_sqr.em'
                    sumV.write(sumFilename)
                    sqrV.write(sqrFilename)

                from pytom.localization.structures import Volume, Orientation
                res = Volume(resFilename, self.volume.subregion)
                orient = Orientation(orientFilename)

                # construct the result
                from pytom.localization.peak_job import PeakResult
                result = PeakResult(res, orient, self.jobID)

                # sent the result back
                if verbose == True:
                    print(self.name + ': sending back result')
                result.send(self.mpi_id, self.backTo)

            except (MessageError, PyTomClassError, ParameterError):
                try:
                    # get the message as StatusMessage and finish
                    msg = StatusMessage('', '')
                    msg.fromStr(mpi_msgString)
                    if msg.getStatus() == 'End':
                        end = True
                    if verbose == True:
                        print(self.name + ': ending...')
                except (MessageError, PyTomClassError, ParameterError):
                    print(
                        'Error parsing message. Message either unknown or invalid.'
                    )
                    assert False
Esempio n. 8
0
    def parallelRun(self,
                    job,
                    splitX=0,
                    splitY=0,
                    splitZ=0,
                    verbose=True,
                    gpuID=-1):
        """
        parallelRun: Parallel run the job on the computer cluster.
        @param job: job
        @type job: L{pytom.localization.peak_job.PeakJob}
        @param splitX: split part along the x dimension
        @type splitX: integer
        @param splitY: split part along the y dimension
        @type splitY: integer
        @param splitZ: split part along the z dimension
        @type splitZ: integer
        """
        import pytom_mpi
        if self.mpi_id == 0:  # send the first message
            #            if not pytom_mpi.isInitialised():
            #                pytom_mpi.init()
            job.members = pytom_mpi.size()
            print('job members', job.members)

            job.send(0, 0)
            print("\n")

        self.gpuID = gpuID
        end = False
        while not end:
            # get the message string
            mpi_msgString = getMsgStr()

            msgType = self.getMsgType(mpi_msgString)

            if msgType == 2:  # Job msg
                msg = self.getJobMsg(mpi_msgString)
                job = self.jobFromMsg(msg)  # set members

                if self.mpi_id == 0:
                    self.distributeJobs(job, splitX, splitY, splitZ)
                else:
                    self.distributeJobs(job)

                result = self.run(verbose, gpuID=gpuID)
                self.summarize(result, self.jobID)

            elif msgType == 1:  # Result msg
                msg = self.getResMsg(mpi_msgString)
                res = self.resFromMsg(msg)

                if verbose == True:
                    print(self.name + ": processing result from worker " +
                          msg.getSender())

                resV = res.result.getVolume()
                resO = res.orient.getVolume()
                jobID = res.jobID

                self.summarize([resV, resO], jobID)

            elif msgType == 0:  # Status msg
                # get the message as StatusMessage and finish
                from pytom.parallel.messages import StatusMessage
                msg = StatusMessage('', '')
                msg.fromStr(mpi_msgString)
                if msg.getStatus() == 'End':
                    end = True
                    if verbose == True:
                        print(self.name + ': end')
            else:  # Error
                raise RuntimeError("False message type!")

        if self.mpi_id == 0:
            # delete the temporary files on the disk
            import os
            files = os.listdir(self.dstDir)
            for name in files:
                if 'job' in name and '.em' in name and not 'sum' in name and not 'sqr' in name:
                    os.remove(self.dstDir + '/' + name)

            if self.gpuID:
                gpuflag = ''
            else:
                gpuflag = ''
            # rename the result files name
            os.rename(
                self.dstDir + '/' + 'node_0_res.em', self.dstDir + '/' +
                'scores_{}{}.em'.format(self.suffix, gpuflag))
            os.rename(
                self.dstDir + '/' + 'node_0_orient.em', self.dstDir + '/' +
                'angles_{}{}.em'.format(self.suffix, gpuflag))

        self.clean()  # clean itself
        pytom_mpi.finalise()
Esempio n. 9
0
def parallelReconstruction(particleList, projectionList, cubeSize, binning, applyWeighting,verbose=False):
    """
    parallelReconstruction
    """
    import pytom_mpi
    from pytom.parallel.messages import StatusMessage
        
    if not pytom_mpi.isInitialised():
        pytom_mpi.init()
        
    mpi_id = pytom_mpi.rank()
    
    if mpi_id == 0:
                
        firstDistribute = False
        numberWorkers = pytom_mpi.size() -1
                        
        #split particleList by number nodes
        
        splitSize = len(particleList) / numberWorkers
                
        pl = []
        
        for i in range(0,len(particleList),splitSize):

            pl.append(particleList[i:i+splitSize])
               
        
        for i in range(0,numberWorkers):
                                            
            msg = ReconstructionMessage(0,i+1,pl[i],projectionList,cubeSize, binning,applyWeighting)
                                    
            pytom_mpi.send(str(msg),i+1)
            
               
            
           
        finished = False
        msgCounter = 0
        
        while not finished:
            
            mpi_msgString = pytom_mpi.receive()
            msg = StatusMessage(1,'0')
            msg.fromStr(mpi_msgString)
            
            if not msg.getStatus() == 'Finished':
                print('Worker ' + str(msg.getSender()) + ' sent status: ' + str(msg.getStatus()))
                 
            msgCounter += 1
            
            finished = msgCounter == numberWorkers
                        
            
        for i in range(0,numberWorkers):
            msg = StatusMessage(mpi_id,'0')
            msg.setStatus('End')
            pytom_mpi.send(str(msg),i+1)
            
        
    else:
        
        worker = ReconstructionWorker()
        worker.parallelRun(verbose)
        
        
    pytom_mpi.finalise()
Esempio n. 10
0
def distributedCorrelationMatrix(job, verbose=False):
    """
    distributedCorrelationMatrix: Performs calculation of correlation matrix either on multiple processes or sequentially.
    """
    import pytom_mpi

    pytom_mpi.init()

    if pytom_mpi.size() > 1:

        mpi_myid = pytom_mpi.rank()

        if mpi_myid == 0:
            manager = CMManager(job)

            manager.distributeCalculation(mpi_myid, verbose)

            manager.parallelEnd()

            manager.saveMatrix()

        else:

            from pytom.parallel.clusterMessages import CorrelationVectorMessage, CorrelationVectorJobMessage
            from pytom.parallel.messages import StatusMessage, MessageError

            end = False
            while not end:
                mpi_msg = pytom_mpi.receive()

                if verbose:
                    print(mpi_msg)

                try:
                    msg = CorrelationVectorJobMessage()
                    msg.fromStr(mpi_msg)

                    worker = CMWorker(msg.getJob())
                    #worker.dumpMsg2Log('node'+str(mpi_myid)+'.log', msg.__str__())
                    resultVector = worker.run()
                    resultMessage = CorrelationVectorMessage(mpi_myid, 0)
                    resultMessage.setVector(resultVector)

                    #worker.dumpMsg2Log('node'+mpi_myid.__str__()+'.log', resultMessage.__str__())
                    if verbose and False:
                        print(resultMessage)

                    pytom_mpi.send(resultMessage.__str__(), 0)

                except (MessageError, RuntimeError, IndexError):
                    msg = StatusMessage('', '')
                    msg.fromStr(mpi_msg)
                    if msg.getStatus() == 'End':
                        end = True
            print('Node ' + mpi_myid.__str__() + ' finished')
    else:
        print('Sequential Processing! Running on one machine only!')
        manager = CMManager(job)

        manager.calculateMatrix()

        manager.saveMatrix()

    pytom_mpi.finalise()
Esempio n. 11
0
    def parallelWork(self, verbose=False, doFinalize=True):
        """
        parallelWork: Distribute joblist to workers. Leave as it is.
        @param verbose:
        @param doFinalize:   
        """

        import pytom_mpi
        from pytom.parallel.messages import Message, StatusMessage, MessageError
        from pytom.basic.exceptions import ParameterError
        from pytom.basic.structures import PyTomClassError

        if not pytom_mpi.isInitialised():
            pytom_mpi.init()

        if self._mpi_id == 0:
            #if current node == 0, be the master node
            numberJobs = len(self._jobList)

            if self._numberWorkers <= numberJobs:
                numberJobsToSend = self._numberWorkers
            else:
                numberJobsToSend = numberJobs

            for i in range(0, numberJobsToSend):
                #send out all first numberJobsToSend jobs
                pytom_mpi.send(str(self._jobList[i]), i + 1)

            numberFinishedJobs = 0
            numberSentJobs = numberJobsToSend

            finished = numberSentJobs == numberJobs and numberFinishedJobs == numberJobs

            while not finished:
                #distribute remaining jobs to finished workers
                mpi_msgString = pytom_mpi.receive()

                msg = Message('1', '0')
                msg.fromStr(mpi_msgString)

                numberFinishedJobs += 1

                if numberSentJobs < numberJobs:
                    pytom_mpi.send(str(self._jobList[numberSentJobs]),
                                   int(msg.getSender()))
                    numberSentJobs += 1

                finished = numberSentJobs == numberJobs and numberFinishedJobs == numberJobs

            if doFinalize:
                for i in range(0, self._numberWorkers):
                    msg = StatusMessage('0', i + 1)
                    msg.setStatus('End')
                    pytom_mpi.send(str(msg), i + 1)
                    print('Sending end msg to:', i + 1)

        else:
            #if any other node id, be a worker node
            end = False

            while not end:

                #listen for messages

                mpi_msgString = pytom_mpi.receive()

                if verbose:
                    print(mpi_msgString)

                try:

                    #wait for job and start processing
                    msg = self.getMsgObject(mpi_msgString)

                    self.setJob(msg)

                    self.run()

                    resultMsg = StatusMessage(self._mpi_id, '0')
                    resultMsg.setStatus('Finished')

                    pytom_mpi.send(str(resultMsg), 0)

                except (MessageError, PyTomClassError, ParameterError):
                    try:
                        #message is a StatusMessage
                        #if message status is End, finish this worker.
                        #You can also add other statuses
                        msg = StatusMessage('', '')
                        msg.fromStr(mpi_msgString)
                        if msg.getStatus() == 'End':
                            end = True

                    except (MessageError, PyTomClassError, ParameterError):
                        #print mpi_msgString
                        #raise MessageError('Message unknown!')
                        raise RuntimeError(
                            'Error parsing message. Message either unknown or invalid.'
                        )

                except:
                    raise RuntimeError(
                        'Something went terribly wrong. Aborting.')

        if doFinalize:
            pytom_mpi.finalise()