Esempio n. 1
0
    def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        """
        Actual metric computation

        Args:
            pred: predicted labels
            target: ground truth labels

        Return:
            A Tensor with the mse loss.
        """
        return mse(pred, target, self.reduction)
Esempio n. 2
0
    def forward(self, pred: torch.Tensor,
                target: torch.Tensor) -> torch.Tensor:
        """
        Actual metric computation

        Args:
            pred: predicted labels
            target: ground truth labels

        Return:
            A Tensor with the rmsle loss.
        """
        return mse(torch.log(pred + 1),
                   torch.log(target + 1),
                   self.reduction,
                   return_state=True)
Esempio n. 3
0
    def __step(self, batch, batch_idx, prefix: str):
        x = batch.x
        edge_index = batch.edge_index
        mini_batch = batch.batch
        edge_attr = batch.edge_attr
        y_hat = self.forward(x, 
                             edge_index, 
                             edge_attr,
                             mini_batch).squeeze(-1)

        loss = pl_regression.mse(y_hat, batch.y)
        rmse = torch.sqrt(loss)
        mae = pl_regression.mae(y_hat, batch.y)
        predictions = y_hat.detach().cpu().numpy()
        r2 = r2_score(predictions, batch.y.cpu())


        return {
            f'{prefix}_loss': loss,
            f'{prefix}_size': len(y_hat),
            f'{prefix}_rmse': rmse,
            f'{prefix}_mae': mae,
            f'{prefix}_r2': r2,
            }