def test_amp_gpu_ddp_slurm_managed(tmpdir):
    """Make sure DDP + AMP work."""
    # simulate setting slurm flags
    tutils.set_random_master_port()
    os.environ['SLURM_LOCALID'] = str(0)

    model = EvalModelTemplate(tutils.get_default_hparams())

    # exp file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # fit model
    trainer = Trainer(
        max_epochs=1,
        gpus=[0],
        distributed_backend='ddp',
        precision=16,
        checkpoint_callback=checkpoint,
        logger=logger,
    )
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address(
        'abc[23-24, 45-40, 40]') == 'abc23'
Esempio n. 2
0
def test_amp_gpu_ddp_slurm_managed(tmpdir):
    """Make sure DDP + AMP work."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()

    # simulate setting slurm flags
    tutils.set_random_master_port()
    os.environ['SLURM_LOCALID'] = str(0)

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(
        show_progress_bar=True,
        max_epochs=1,
        gpus=[0],
        distributed_backend='ddp',
        precision=16
    )

    # exp file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['checkpoint_callback'] = checkpoint
    trainer_options['logger'] = logger

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
Esempio n. 3
0
def test_amp_gpu_ddp_slurm_managed(tmpdir):
    """Make sure DDP + AMP work."""
    # simulate setting slurm flags
    tutils.set_random_master_port()

    model = BoringModel()

    # exp file to get meta
    logger = tutils.get_default_logger(tmpdir)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # fit model
    trainer = Trainer(
        default_root_dir=tmpdir,
        max_epochs=1,
        gpus=[0],
        accelerator='ddp_spawn',
        precision=16,
        callbacks=[checkpoint],
        logger=logger,
    )
    trainer.is_slurm_managing_tasks = True
    trainer.fit(model)

    # correct result and ok accuracy
    assert trainer.state == TrainerState.FINISHED, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.slurm_connector.resolve_root_node_address('abc') == 'abc'
    assert trainer.slurm_connector.resolve_root_node_address(
        'abc[23]') == 'abc23'
    assert trainer.slurm_connector.resolve_root_node_address(
        'abc[23-24]') == 'abc23'
    assert trainer.slurm_connector.resolve_root_node_address(
        'abc[23-24, 45-40, 40]') == 'abc23'
Esempio n. 4
0
def test_dp_resume(tmpdir):
    """Make sure DP continues training correctly."""
    hparams = EvalModelTemplate.get_default_hparams()
    model = EvalModelTemplate(**hparams)

    trainer_options = dict(
        max_epochs=1,
        gpus=2,
        distributed_backend='dp',
    )

    # get logger
    logger = tutils.get_default_logger(tmpdir)

    # exp file to get weights
    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['logger'] = logger
    trainer_options['checkpoint_callback'] = checkpoint

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # track epoch before saving. Increment since we finished the current epoch, don't want to rerun
    real_global_epoch = trainer.current_epoch + 1

    # correct result and ok accuracy
    assert result == 1, 'amp + dp model failed to complete'

    # ---------------------------
    # HPC LOAD/SAVE
    # ---------------------------
    # save
    trainer.hpc_save(tmpdir, logger)

    # init new trainer
    new_logger = tutils.get_default_logger(tmpdir, version=logger.version)
    trainer_options['logger'] = new_logger
    trainer_options['checkpoint_callback'] = ModelCheckpoint(tmpdir)
    trainer_options['limit_train_batches'] = 0.5
    trainer_options['limit_val_batches'] = 0.2
    trainer_options['max_epochs'] = 1
    new_trainer = Trainer(**trainer_options)

    # set the epoch start hook so we can predict before the model does the full training
    def assert_good_acc():
        assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0

        # if model and state loaded correctly, predictions will be good even though we
        # haven't trained with the new loaded model
        dp_model = new_trainer.model
        dp_model.eval()

        dataloader = trainer.train_dataloader
        tutils.run_prediction(dataloader, dp_model, dp=True)

    # new model
    model = EvalModelTemplate(**hparams)
    model.on_train_start = assert_good_acc

    # fit new model which should load hpc weights
    new_trainer.fit(model)

    # test freeze on gpu
    model.freeze()
    model.unfreeze()
Esempio n. 5
0
def test_dp_resume(tmpdir):
    """Make sure DP continues training correctly."""
    model = BoringModel()

    trainer_options = dict(max_epochs=1,
                           gpus=2,
                           accelerator='dp',
                           default_root_dir=tmpdir)

    # get logger
    logger = tutils.get_default_logger(tmpdir)

    # exp file to get weights
    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['logger'] = logger
    trainer_options['callbacks'] = [checkpoint]

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    trainer.fit(model)

    # track epoch before saving. Increment since we finished the current epoch, don't want to rerun
    real_global_epoch = trainer.current_epoch + 1

    # correct result and ok accuracy
    assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"

    # ---------------------------
    # HPC LOAD/SAVE
    # ---------------------------
    # save
    trainer.checkpoint_connector.hpc_save(tmpdir, logger)

    # init new trainer
    new_logger = tutils.get_default_logger(tmpdir, version=logger.version)
    trainer_options['logger'] = new_logger
    trainer_options['callbacks'] = [ModelCheckpoint(dirpath=tmpdir)]
    trainer_options['limit_train_batches'] = 0.5
    trainer_options['limit_val_batches'] = 0.2
    trainer_options['max_epochs'] = 1
    new_trainer = Trainer(**trainer_options)

    class CustomModel(BoringModel):
        def __init__(self):
            super().__init__()
            self.on_train_start_called = False

        # set the epoch start hook so we can predict before the model does the full training
        def on_train_start(self):
            assert self.trainer.current_epoch == real_global_epoch and self.trainer.current_epoch > 0

            # if model and state loaded correctly, predictions will be good even though we
            # haven't trained with the new loaded model
            dp_model = new_trainer.model
            dp_model.eval()
            dp_model.module.module.running_stage = RunningStage.EVALUATING

            dataloader = self.train_dataloader()
            tpipes.run_prediction(self.trainer.lightning_module, dataloader)
            self.on_train_start_called = True

    # new model
    model = CustomModel()

    # fit new model which should load hpc weights
    new_trainer.fit(model)
    assert model.on_train_start_called

    # test freeze on gpu
    model.freeze()
    model.unfreeze()
Esempio n. 6
0
def test_amp_gpu_ddp_slurm_managed():
    """
    Make sure DDP + AMP work
    :return:
    """
    if not can_run_gpu_test():
        return

    # simulate setting slurm flags
    os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
    os.environ['SLURM_LOCALID'] = str(0)

    hparams = get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(show_progress_bar=True,
                           max_nb_epochs=1,
                           gpus=[0],
                           distributed_backend='ddp',
                           use_amp=True)

    save_dir = init_save_dir()

    # exp file to get meta
    exp = get_exp(False)
    exp.argparse(hparams)
    exp.save()

    # exp file to get weights
    checkpoint = ModelCheckpoint(save_dir)

    # add these to the trainer options
    trainer_options['checkpoint_callback'] = checkpoint
    trainer_options['experiment'] = exp

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address(
        'abc[23-24, 45-40, 40]') == 'abc23'

    # test model loading with a map_location
    map_location = 'cuda:1'
    pretrained_model = load_model(exp, save_dir, True, map_location)

    # test model preds
    run_prediction(model.test_dataloader, pretrained_model)

    if trainer.use_ddp:
        # on hpc this would work fine... but need to hack it for the purpose of the test
        trainer.model = pretrained_model
        trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers(
        )

    # test HPC loading / saving
    trainer.hpc_save(save_dir, exp)
    trainer.hpc_load(save_dir, on_gpu=True)

    # test freeze on gpu
    model.freeze()
    model.unfreeze()

    clear_save_dir()
Esempio n. 7
0
def test_dp_resume():
    """
    Make sure DP continues training correctly
    :return:
    """
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(
        show_progress_bar=True,
        max_nb_epochs=2,
        gpus=2,
        distributed_backend='dp',
    )

    save_dir = tutils.init_save_dir()

    # get logger
    logger = tutils.get_test_tube_logger(debug=False)

    # exp file to get weights
    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['logger'] = logger
    trainer_options['checkpoint_callback'] = checkpoint

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # track epoch before saving
    real_global_epoch = trainer.current_epoch

    # correct result and ok accuracy
    assert result == 1, 'amp + dp model failed to complete'

    # ---------------------------
    # HPC LOAD/SAVE
    # ---------------------------
    # save
    trainer.hpc_save(save_dir, logger)

    # init new trainer
    new_logger = tutils.get_test_tube_logger(version=logger.version)
    trainer_options['logger'] = new_logger
    trainer_options['checkpoint_callback'] = ModelCheckpoint(save_dir)
    trainer_options['train_percent_check'] = 0.2
    trainer_options['val_percent_check'] = 0.2
    trainer_options['max_nb_epochs'] = 1
    new_trainer = Trainer(**trainer_options)

    # set the epoch start hook so we can predict before the model does the full training
    def assert_good_acc():
        assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0

        # if model and state loaded correctly, predictions will be good even though we
        # haven't trained with the new loaded model
        dp_model = new_trainer.model
        dp_model.eval()

        dataloader = trainer.get_train_dataloader()
        tutils.run_prediction(dataloader, dp_model, dp=True)

    # new model
    model = LightningTestModel(hparams)
    model.on_sanity_check_start = assert_good_acc

    # fit new model which should load hpc weights
    new_trainer.fit(model)

    # test freeze on gpu
    model.freeze()
    model.unfreeze()

    tutils.clear_save_dir()
Esempio n. 8
0
def main():
    """
    Make sure DDP + AMP continue training correctly
    :return:
    """
    hparams = get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(
        show_progress_bar=True,
        max_nb_epochs=4,
        gpus=2,
        distributed_backend='dp',
    )

    save_dir = init_save_dir()

    # exp file to get meta
    exp = get_exp(False)
    exp.argparse(hparams)
    exp.save()

    # exp file to get weights
    checkpoint = ModelCheckpoint(save_dir)

    # add these to the trainer options
    trainer_options['experiment'] = exp
    trainer_options['checkpoint_callback'] = checkpoint

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # track epoch before saving
    real_global_epoch = trainer.current_epoch

    # correct result and ok accuracy
    assert result == 1, 'amp + dp model failed to complete'

    # ---------------------------
    # HPC LOAD/SAVE
    # ---------------------------
    # save
    trainer.hpc_save(save_dir, exp)

    # init new trainer
    new_exp = get_exp(False, version=exp.version)
    trainer_options['experiment'] = new_exp
    trainer_options['checkpoint_callback'] = ModelCheckpoint(save_dir)
    trainer_options['train_percent_check'] = 0.2
    trainer_options['val_percent_check'] = 0.2
    trainer_options['max_nb_epochs'] = 1
    new_trainer = Trainer(**trainer_options)

    # set the epoch start hook so we can predict before the model does the full training
    def assert_good_acc():
        assert trainer.current_epoch == real_global_epoch and trainer.current_epoch > 0

        # if model and state loaded correctly, predictions will be good even though we
        # haven't trained with the new loaded model
        dp_model = new_trainer.model
        dp_model.eval()

        _ = [run_prediction(dataloader, dp_model, dp=True) for dataloader in trainer.val_dataloader]

    # new model
    model = LightningTestModel(hparams)
    model.on_sanity_check_start = assert_good_acc

    # fit new model which should load hpc weights
    new_trainer.fit(model)

    # test freeze on gpu
    model.freeze()
    model.unfreeze()

    clear_save_dir()
def test_amp_gpu_ddp_slurm_managed():
    """
    Make sure DDP + AMP work
    :return:
    """
    if not can_run_gpu_test():
        return

    reset_seed()

    # simulate setting slurm flags
    set_random_master_port()
    os.environ['SLURM_LOCALID'] = str(0)

    hparams = get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(show_progress_bar=True,
                           max_nb_epochs=1,
                           gpus=[0],
                           distributed_backend='ddp',
                           use_amp=True)

    save_dir = init_save_dir()

    # exp file to get meta
    logger = get_test_tube_logger(False)

    # exp file to get weights
    checkpoint = init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['checkpoint_callback'] = checkpoint
    trainer_options['logger'] = logger

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address(
        'abc[23-24, 45-40, 40]') == 'abc23'

    # test model loading with a map_location
    pretrained_model = load_model(logger.experiment,
                                  trainer.checkpoint_callback.filepath)

    # test model preds
    [
        run_prediction(dataloader, pretrained_model)
        for dataloader in trainer.get_test_dataloaders()
    ]

    if trainer.use_ddp:
        # on hpc this would work fine... but need to hack it for the purpose of the test
        trainer.model = pretrained_model
        trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers(
        )

    # test HPC loading / saving
    trainer.hpc_save(save_dir, logger)
    trainer.hpc_load(save_dir, on_gpu=True)

    # test freeze on gpu
    model.freeze()
    model.unfreeze()

    clear_save_dir()