def test_stripped_onnx_load_model():
    model = Net()
    outdir = "out/stripped_load_model_test"
    tou.export_testcase(model, torch.rand(1, 1, 28, 28), outdir,
                        strip_large_tensor_data=True, training=True,
                        do_constant_folding=False)
    tou.load_model(os.path.join(outdir, "model.onnx"))
def _helper(model, args, d, **kwargs):
    output_dir = _get_output_dir(d)
    if 'training' not in kwargs:
        kwargs['training'] = model.training
    if 'do_constant_folding' not in kwargs:
        kwargs['do_constant_folding'] = False
    export_testcase(model, args, output_dir, **kwargs)
    return output_dir
Esempio n. 3
0
def test_onnx_load_model():
    model = Net()
    outdir = "out/load_model_test"
    tou.export_testcase(model,
                        torch.rand(1, 1, 28, 28),
                        outdir,
                        training=True,
                        do_constant_folding=False)
    tou.load_model(os.path.join(outdir, "model.onnx"))
Esempio n. 4
0
def _helper(model, args, d, use_pfto=True, **kwargs):
    output_dir = _get_output_dir(d)
    if 'training' not in kwargs:
        kwargs['training'] = model.training
    if 'do_constant_folding' not in kwargs:
        kwargs['do_constant_folding'] = False
    if 'metadata' not in kwargs:
        kwargs["metadata"] = False
    export_testcase(model, args, output_dir, use_pfto=use_pfto, **kwargs)
    return output_dir
Esempio n. 5
0
def test_export_testcase_return_output():
    model = nn.Sequential(nn.Linear(5, 10, bias=False))
    x = torch.zeros((2, 5))

    output_dir = _get_output_dir('export_filename')

    if pytorch_pfn_extras.requires("1.6.0"):
        with pytest.warns(UserWarning):
            (out, ) = export_testcase(model, x, output_dir, return_output=True)
    else:
        (out, ) = export_testcase(model, x, output_dir, return_output=True)

    assert os.path.isfile(os.path.join(output_dir, 'model.onnx'))
    expected_out = torch.zeros((2, 10))  # check only shape size
    np.testing.assert_allclose(out.detach().cpu().numpy(),
                               expected_out.detach().cpu().numpy())
def _helper(model, args, d, **kwargs):
    output_dir = _get_output_dir(d)
    if 'training' not in kwargs:
        kwargs['training'] = model.training
    export_testcase(model, args, output_dir, **kwargs)
    return output_dir