Esempio n. 1
0
def test_d4_image2label():
    x = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]).unsqueeze(0).unsqueeze(0).float()
    model = SumAll()

    output = tta.d4_image2label(model, x)
    expected = int(x.sum())

    assert int(output) == expected
Esempio n. 2
0
 def predict(self, image_path):
     '''
     模型预测返回结果
     :param input:  评估传入样例 {"image_path":"image\/172691.jpg"}
     :return: 模型预测成功之后返回给系统样例 {"label":"Loxura_atymnus"}
     '''
     outputs = []
     for submodel, transform in zip(self.models, self.val_transforms):
         img = Image.open(image_path).convert('RGB')
         img = transform(img)
         img = img.unsqueeze(0)
         img = img.cuda()
         with torch.no_grad():
             output = tta.d4_image2label(submodel, img)
             outputs.append(output)
     final = torch.mean(torch.stack(outputs, 0), 0)
     _,pred = torch.max(final,1)
     pred_name = self.id_name_dict[pred.detach().cpu().item()]
     return {"label": pred_name}