def predict(self, image_path):
        '''
        模型预测返回结果
        :param input: 评估传入样例 {"image_path": "./data/input/cloudy/00000.jpg"}
        :return: 模型预测成功中户 {"label": 0}
        '''
        print(image_path)
        # Normalize = {'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225)}
        result = []
        for size in SIZES:
            img = cv.imread(image_path)
            img = cv.resize(img, dsize=(size, size))
            tensor = img_to_tensor(img)
            tensor = Variable(torch.unsqueeze(tensor, dim=0).float(),
                              requires_grad=False)

            for subModel in self.models:
                output = tta.fliplr_image2label(subModel, tensor.to(device))
                result.append(output)

        new_output = torch.mean(torch.stack(result, 0), 0)
        pred = new_output.max(1, keepdim=True)[1]

        # output = tta.fliplr_image2label(self.model, tensor.to(device))
        # pred = output.max(1, keepdim=True)[1].item()

        return {"label": pred}
Esempio n. 2
0
def test_fliplr_image2label():
    x = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]).unsqueeze(0).unsqueeze(0).float()
    model = SumAll()

    output = tta.fliplr_image2label(model, x)
    expected = int(x.sum())

    assert int(output) == expected
Esempio n. 3
0
def test_fliplr_image2label():
    x = torch.rand((4, 3, 224, 224))
    model = GlobalAvgPool2d(flatten=True)

    output = tta.fliplr_image2label(model, x)
    np.testing.assert_allclose(to_numpy(output),
                               to_numpy(x.mean(dim=(2, 3))),
                               atol=1e-6,
                               rtol=1e-6)
    imgPath = './data/input/COVIDClassification/image/1.jpg'

    Normalize = {'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225)}
    img = Image.open(imgPath).convert('RGB')
    img = np.array(img)
    img = cv.resize(img, dsize=(224, 224))
    tensor = img_to_tensor(img, Normalize)
    tensor = Variable(torch.unsqueeze(tensor, dim=0).float(),
                      requires_grad=False).to(device)

    # model = []
    # for fold in range(5):
    #     submodel = seresnet34()
    #     submodel.last_linear = torch.nn.Linear(512, 6)
    #     model.append(submodel.to(device))
    #
    # result = []
    # for subModel in model:
    #     output = tta.fliplr_image2label(subModel, tensor.to(device))
    #     result.append(output)
    # output = tta.fliplr_image2label(model, tensor.to(device))
    # pred = output.max(1, keepdim=True)[1]

    model = seresnet34()
    model.last_linear = torch.nn.Linear(512, 6)
    model = model.to(device)
    output = tta.fliplr_image2label(model, tensor.to(device))
    pred = output.max(1, keepdim=True)[1].item()

    print(pred)
Esempio n. 5
0
submit = pd.read_csv('./data/result.csv', header=None)
submit.columns = ['name']
model = EfficientNet.from_pretrained(model_name='efficientnet-b7',
                                     num_classes=2)
net_weight = './ckpt/efficientnet/efficientnet_30.pth'
model.load_state_dict(torch.load(net_weight))
model = model.cuda()
model.eval()
opt = Config()
#
infer_transforms = T.Compose([
    T.Resize((opt.input_size, opt.input_size)),
    T.ToTensor(),
    T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
result = []
test_dir = './data/test/'
for name in submit['name'].values:
    img_path = os.path.join(test_dir, name)
    data = Image.open(img_path)
    data = data.convert('RGB')
    data = infer_transforms(data)
    data = data.unsqueeze(0)
    inputs = data.cuda()
    with torch.no_grad():
        outputs = tta.fliplr_image2label(model, inputs)
    _, preds = torch.max(outputs.data, 1)
    result.append(preds.cpu().data.numpy()[0])
    #
submit['label'] = result
submit.to_csv('submit.csv', index=False, header=None)