Esempio n. 1
0
      )

    def forward(self, img):
      feature = self.conv(img)
      output = self.fc(feature.view(img.shape[0], -1))
      return output

  net = LeNet()
  net,

'''测试'''
with st.echo():
  batch_size = st.slider(label='批量', min_value=256, max_value=2560, value=256, step=256)
  lr = st.slider(label='学习率', min_value=0.001, max_value=1.0, value=0.001, step=0.001)
  num_epochs = st.slider(label='迭代周期', min_value=5, max_value=100, value=5, step=5)
  train_iter, test_iter = load_data_fashion_mnist(batch_size)
  # 因为卷积神经网络计算比多层感知机要复杂,建议使用GPU来加速计算。因此,我们对3.6节(softmax回归的从零开始实现)中描述的evaluate_accuracy函数略作修改,使其支持GPU计算。

  def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    device,
    loss = torch.nn.CrossEntropyLoss()
    batch_count = 0
    for epoch in range(num_epochs):
      train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
      for X, y in train_iter:
        X = X.to(device)
        y = y.to(device)
        y_hat = net(X)
        l = loss(y_hat, y)
        optimizer.zero_grad()
Esempio n. 2
0
    net,
'''
### 读取数据
虽然论文中AlexNet使用ImageNet数据集,但因为ImageNet数据集训练时间较长,我们仍用前面的Fashion-MNIST数据集来演示AlexNet。读取数据的时候我们额外做了一步将图像高和宽扩大到AlexNet使用的图像高和宽224。这个可以通过torchvision.transforms.Resize实例来实现。也就是说,我们在ToTensor实例前使用Resize实例,然后使用Compose实例来将这两个变换串联以方便调用。
'''
with st.echo():
    batch_size = st.slider(label='批量',
                           min_value=1,
                           max_value=2560,
                           value=128,
                           step=128)
    lr = st.slider(label='学习率',
                   min_value=0.001,
                   max_value=1.0,
                   value=0.001,
                   step=0.001)
    num_epochs = st.slider(label='迭代周期',
                           min_value=1,
                           max_value=100,
                           value=5,
                           step=5)

    # 如出现“out of memory”的报错信息,可减小batch_size或resize
    train_iter, test_iter = load_data_fashion_mnist(batch_size,
                                                    resize=224,
                                                    num_workers=0)

    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    train_ch5(net, train_iter, test_iter, batch_size, optimizer, device,
              num_epochs)