Esempio n. 1
0
    def test_actionlist(self):
        '''test_actionlist
        '''
        dslist = DatasetList()
        actlist = ActionList()
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")
        mask_list = ['@CB @CA', '@CA @H']

        for mask in mask_list:
            actlist.add(CA.Action_Vector(), mask, traj.top, dslist=dslist)
        actlist.compute(traj)

        dslist2 = pt.calc_vector(traj, mask_list)
        dslist4 = va.vector_mask(traj, mask_list)

        dslist3_0 = pt.calc_vector(traj, mask_list[0])
        dslist3_1 = pt.calc_vector(traj, mask_list[1])

        aa_eq(dslist3_0, dslist2[0])
        aa_eq(dslist3_1, dslist2[1])

        aa_eq(dslist3_0, dslist4[0])
        aa_eq(dslist3_1, dslist4[1])

        aa_eq(dslist3_0, dslist[0].values)
        aa_eq(dslist3_1, dslist[1].values)
Esempio n. 2
0
    def test_actionlist(self):
        '''test_actionlist
        '''
        dslist = DatasetList()
        actlist = ActionList()
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")
        mask_list = ['@CB @CA', '@CA @H']

        for mask in mask_list:
            actlist.add(CA.Action_Vector(),
                        mask,
                        traj.top,
                        dslist=dslist)
        actlist.compute(traj)

        dslist2 = pt.calc_vector(traj, mask_list)
        dslist4 = va.vector_mask(traj, mask_list)

        dslist3_0 = pt.calc_vector(traj, mask_list[0])
        dslist3_1 = pt.calc_vector(traj, mask_list[1])

        aa_eq(dslist3_0, dslist2[0])
        aa_eq(dslist3_1, dslist2[1])

        aa_eq(dslist3_0, dslist4[0])
        aa_eq(dslist3_1, dslist4[1])

        aa_eq(dslist3_0, dslist[0].values)
        aa_eq(dslist3_1, dslist[1].values)
Esempio n. 3
0
File: noe.py Progetto: n-salvi/adaMD
    def calcNOEfull(self, tstep=1.0, numtaus=128):
        print('calculating correlation functions\n')
        self.getDistances()
        self.ACFfull = dict()

        for (r1, a1), (r2, a2) in zip(self.list1, self.list2):
            label = str(r1) + a1 + ':' + str(r2) + a2
            first_in_seq = list(self.traj.top.residues)[0].index
            idx1 = pt.select_atoms(
                searchAT[a1] + ' & :' + str(r1 - first_in_seq), self.traj.top)
            idx2 = pt.select_atoms(
                searchAT[a2] + ' & :' + str(r2 - first_in_seq), self.traj.top)
            pairs = list(map(list, product(idx1, idx2)))
            data_vec = va.vector_mask(self.traj, pairs, dtype='ndarray')
            self.ACFfull[label] = []
            if len(data_vec.shape) < 3:
                data_vec = [data_vec]
                #self.dist[label] ?
            for n, vals in enumerate(data_vec):
                r = self.dist[label][n]
                cosines = np.array([
                    np.dot(unit_vector(vals[0]), unit_vector(v)) for v in vals
                ])
                cosines = 1.5 * cosines**2 - .5
                cosines = cosines / ((r * 1e-10)**3)
                tot = mycorrelate2(cosines, norm=False)
                self.ACFfull[label].append(tot)
        del self.traj
        dump(self.ACFfull, open(get_today() + '-ACFfull.pkl', 'wb'))
        print('fitting correlation functions\n')
        self.ACFfull_fit = dict()
        for label, acfs in self.ACFfull.items():
            #print(acfs)
            acf = np.mean(acfs, axis=0)
            norm_fact = acf[0]
            acf /= acf[0]
            #print(acf)
            taus, amps, nu1, nu2 = \
                smooth_and_fit(acf, tstep=tstep, lp_threshold=0.15, lp_threshold_2=0.05, mintau=2., numtaus=numtaus)
            self.ACFfull_fit[label] = [taus, np.array(amps) * norm_fact]
            #print(taus, np.array(amps)*norm_fact)
        dump(self.ACFfull_fit, open(get_today() + '-ACFfull-fit.pkl', 'wb'))
        print('calculating NOE rates\n')
        self.sigma_full = dict()
        for label, fit in self.ACFfull_fit.items():
            taus, amps = fit
            taus = np.array(taus) * 1e-12
            sigma = (mu_0 / (4 * pi))**2
            sigma = sigma * gamma**4 * hbar**2 * .1
            #sigma = sigma/(self.reff[label]*1e-10)**6
            temp = [a * t for a, t in zip(amps, taus)]
            self.sigma_full[label] = sigma * np.sum(temp)
        dump(self.sigma_full, open(get_today() + '-sigma-full.pkl', 'wb'))
Esempio n. 4
0
File: rdc.py Progetto: n-salvi/adaMD
def RDC_from_S(eigx, eigz, Aa, Ar, trajfiles, topfile, rdc_types, masks, step=1, seg=None):
    results = dict()
    for n, tr in enumerate(trajfiles):
        temp =dict()
        traj = pt.iterload(tr, topfile, frame_slice=(0, -1, step))
        if seg==None:
            residues = [r.index+1 for r in traj.topology.residues if r.name!='PRO' and r.index>0]
        else:
            residues = [r.index+1 for r in traj.topology.residues
                        if r.name!='PRO' and r.index>=1 and r.index+1>=seg[0] and r.index+1<=seg[1]]
        #get vectors from traj
        for m, el in enumerate(rdc_types):
            if seg==None:
                indices1 = pt.select_atoms(masks[m][0]+' & !(:1) & !(:PRO)', traj.top)
                indices2 = pt.select_atoms(masks[m][1]+' & !(:1) & !(:PRO)', traj.top)
            else:

                indices1 = np.array([
                    pt.select_atoms(masks[m][0]+' & :'+str(res)+' & !(:PRO)', traj.top)[0]
                    for res in residues #range(seg[0], seg[1]+1)
                    if len(pt.select_atoms(masks[m][0]+' & :'+str(res)+' & !(:PRO)', traj.top))>0])
                indices2 = np.array([
                        pt.select_atoms(masks[m][1]+' & :'+str(res)+' & !(:PRO)', traj.top)[0]
                        for res in residues #range(seg[0], seg[1]+1)
                        if len(pt.select_atoms(masks[m][1]+' & :'+str(res)+' & !(:PRO)', traj.top))>0])
            if el=='CAHA':
                indices2 = indices1+1

            pairs = np.array(list(zip(indices1, indices2)))
            data_vec = va.vector_mask(traj, pairs, dtype='ndarray')
            #calculate theta and phi angles
            thetas = [[angle_between(vec, eigz) for vec in veclist] for veclist in data_vec]
            projs = [[projection(vec, eigz) for vec in veclist] for veclist in data_vec]
            phis = [[angle_between(vec, eigx) for vec in veclist] for veclist in projs]

            Dmax = -(gammas[masks[m][0]]*gammas[masks[m][1]]*h*mu_0)/(8*pi**3*bond[masks[m][0]+masks[m][1]]**3)

            temp[el] = {residues[idx]:np.mean([Dmax*(0.5*(3*np.cos(th)**2-1)*Aa+0.75*Ar*np.sin(th)**2*np.cos(2*phis[idx][f]) )
                            for f, th in enumerate(ths)])
                                for idx, ths in enumerate(thetas)}
        results[n] = temp
        with open('rdc_'+str(n)+'.pkl', 'wb') as tf:
            dump(temp, tf)
    return results
Esempio n. 5
0
File: noe.py Progetto: n-salvi/adaMD
 def calcACFreff(self):
     self.ACFreff = dict()
     #self.test=dict()
     for (r1, a1), (r2, a2) in zip(self.list1, self.list2):
         label = str(r1) + a1 + ':' + str(r2) + a2
         first_in_seq = list(self.traj.top.residues)[0].index
         idx1 = pt.select_atoms(
             searchAT[a1] + ' & :' + str(r1 - first_in_seq), self.traj.top)
         idx2 = pt.select_atoms(
             searchAT[a2] + ' & :' + str(r2 - first_in_seq), self.traj.top)
         pairs = list(map(list, product(idx1, idx2)))
         data_vec = va.vector_mask(self.traj, pairs, dtype='ndarray')
         if len(data_vec.shape) < 3:
             data_vec = [data_vec]
         self.ACFreff[label] = [
             pt.timecorr(vals,
                         vals,
                         order=2,
                         tstep=1,
                         tcorr=len(vals),
                         norm=False,
                         dtype='ndarray') for vals in data_vec
         ]
         #for testing only: calculate the ACF without pytraj.timecorr
         #self.test[label] = []
         #for vals in data_vec:
         #vals2 = np.array([unit_vector(v) for v in vals])
         #x = vals2[:, 0]
         #y = vals2[:, 1]
         #z = vals2[:, 2]
         #x2 = mycorrelate2(x**2, norm=False)
         #y2 = mycorrelate2(y**2, norm=False)
         #z2 = mycorrelate2(z**2, norm=False)
         #xy = mycorrelate2(x*y, norm=False)
         #yz = mycorrelate2(y*z, norm=False)
         #xz = mycorrelate2(x*z, norm=False)
         #tot = (x2+y2+z2+2*xy+2*xz+2*yz)
         #tot /= tot[0]
         #tot = 1.5*(tot)-.5
         dump(self.ACFreff, open(get_today() + '-ACFreff.pkl', 'wb'))
Esempio n. 6
0
    def test_ired_vector(self):
        '''test mask as a list of strings or as a 2D array of integers
        '''
        parm_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                '1IEE_A_prot.prmtop')
        trajin_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                  '1IEE_A_test.mdcrd')
        traj = pt.iterload(trajin_dir, parm_dir)

        # get a list of mask from cpptraj input
        maskes = []
        lines = None

        n_indices_cpp = []

        with open('data/ired.in', 'r') as fh:
            lines = fh.readlines()
            for line in lines:
                if 'vector' in line and 'ired' in line:
                    # example: vector v100 @1541 ired @1542
                    sline = line.split()
                    mask = ' '.join((sline[2], sline[4]))
                    n_indices_cpp.append(int(sline[2][1:]) - 1)
                    maskes.append(mask)

        h_indices_cpp = [i + 1 for i in n_indices_cpp]

        # calcuate vector from a list of strings
        data_vec = va.vector_mask(traj, maskes)

        # calcuate vector from a 2d array of integers
        nh_indices = np.array(list(zip(n_indices_cpp, h_indices_cpp)))
        data_vec_2 = va.vector_mask(traj, nh_indices)

        # re-create cpptraj input to run cpptraj
        txt = ''.join(lines)
        # add parm and trajin lines
        txt = 'parm ' + parm_dir + '\n' + \
              'trajin ' + trajin_dir + '\n' + \
              txt

        state = pt.datafiles.load_cpptraj_output(txt, dtype='state')
        state.run()
        cpp_data = state.datasetlist
        cpp_vectors = cpp_data.grep('vector', mode='dtype').values
        cpp_matired = cpp_data.grep('matrix', mode='dtype')['matired']

        # assert between pytraj's data_vec and cpptraj's cpp_vectors
        aa_eq(data_vec, cpp_vectors)

        # from a 2D array of integers
        aa_eq(data_vec_2, cpp_vectors)

        # test ired vector with ired matrix
        # open file

        with open('data/ired_reduced.in', 'r') as fh:
            text = ''.join(fh.readlines())
        state2 = pt.load_batch(traj, text)
        state2.run()

        data = pt.ired_vector_and_matrix(traj, nh_indices, order=2)
        data_vec_3 = data[0]
        assert len(data_vec_3) == 126, 'must have 126 vectors'
        matired = data[1]
        # TODO: know why??
        matired /= matired[0, 0]
        aa_eq(data_vec_3, cpp_vectors)
        assert pt.tools.rmsd(matired.flatten(),
                             cpp_matired.values) < 1E-6, 'matired'
Esempio n. 7
0
    def __init__(self,
                 top,
                 trajs,
                 rotfit=False,
                 mask='@CA',
                 stride=1,
                 n_blocks=1,
                 bframes=50000,
                 skip=25000):
        #read sequence
        if trajs[0][-3:] == 'dcd':
            traj = pt.iterload(trajs[0], top)
        else:
            #filename, top_name = get_fn(trajs[0]), get_fn(top)
            m_traj = md.load(trajs[0], top=top)
            traj = pt.Trajectory(xyz=m_traj.xyz.astype('f8'), top=top)
        self.sequence = {res.index + 1: res.name for res in traj.top.residues}
        self.top = top
        self.trajs = trajs
        n_frames = len(traj)

        self.n_indices = pt.select_atoms('@N & !(:1) & !(:PRO)', traj.top)
        self.h_indices = self.n_indices + 1
        self.nh_pairs = np.array(list(zip(self.n_indices, self.h_indices)))

        res_list = sorted(
            [k for k, val in self.sequence.items() if val != 'PRO' and k != 1])

        self.acf = dict()
        self.S2 = dict()

        if n_blocks == 1:
            for tt, t in enumerate(self.trajs):
                if t[-3:] == 'dcd':
                    traj = pt.load(t, top, stride=stride)
                else:
                    #filename, top_name = get_fn(t), get_fn(top)
                    m_traj = md.load(t, top=top)
                    traj = pt.Trajectory(xyz=m_traj.xyz.astype('f8'), top=top)
                if rotfit == True:
                    #print('RMSD fitting on '+mask)
                    _ = traj.superpose(ref=-1, mask='@CA')
                data_vec = va.vector_mask(traj, self.nh_pairs, dtype='ndarray')
                self.acf[tt] = {
                    res_list[n]: pt.timecorr(vals,
                                             vals,
                                             order=2,
                                             tstep=1,
                                             tcorr=len(vals),
                                             norm=False,
                                             dtype='ndarray')
                    for n, vals in enumerate(data_vec)
                }
                self.S2[tt] = {
                    res_list[n]: S2(vals)
                    for n, vals in enumerate(data_vec)
                }
        else:
            index = 0
            bcount = 0
            for tt, t in enumerate(self.trajs):
                print(tt + 1, '/', len(self.trajs))
                while bcount < n_blocks:
                    first_frame = bcount * skip
                    last_frame = first_frame + bframes
                    if t[-3:] == 'dcd':
                        traj = pt.load(t,
                                       top,
                                       frame_indices=slice(
                                           first_frame, last_frame, stride))
                    else:
                        #filename, top_name = get_fn(t), get_fn(top)
                        m_traj = md.load(t, top=top)
                        m_traj = m_traj[first_frame:last_frame:stride]
                        traj = pt.Trajectory(xyz=m_traj.xyz.astype('f8'),
                                             top=top)
                    if rotfit == True:
                        _ = traj.superpose(ref=-1, mask='@CA')
                    data_vec = va.vector_mask(traj,
                                              self.nh_pairs,
                                              dtype='ndarray')
                    self.acf[index] = {
                        res_list[n]: pt.timecorr(vals,
                                                 vals,
                                                 order=2,
                                                 tstep=1,
                                                 tcorr=len(vals),
                                                 norm=False,
                                                 dtype='ndarray')
                        for n, vals in enumerate(data_vec)
                    }
                    self.S2[index] = {
                        res_list[n]: S2(vals)
                        for n, vals in enumerate(data_vec)
                    }
                    bcount += 1
                    index += 1
                bcount = 0
Esempio n. 8
0
    def test_ired_vector(self):
        '''test mask as a list of strings or as a 2D array of integers
        '''
        parm_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                '1IEE_A_prot.prmtop')
        trajin_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                  '1IEE_A_test.mdcrd')
        traj = pt.iterload(trajin_dir, parm_dir)

        # get a list of mask from cpptraj input
        maskes = []
        lines = None

        n_indices_cpp = []

        with open('data/ired.in', 'r') as fh:
            lines = fh.readlines()
            for line in lines:
                if 'vector' in line and 'ired' in line:
                    # example: vector v100 @1541 ired @1542
                    sline = line.split()
                    mask = ' '.join((sline[2], sline[4]))
                    n_indices_cpp.append(int(sline[2][1:]) - 1)
                    maskes.append(mask)

        h_indices_cpp = [i + 1 for i in n_indices_cpp]

        # calcuate vector from a list of strings
        data_vec = va.vector_mask(traj, maskes)

        # calcuate vector from a 2d array of integers
        nh_indices = np.array(list(zip(n_indices_cpp, h_indices_cpp)))
        data_vec_2 = va.vector_mask(traj, nh_indices)

        # re-create cpptraj input to run cpptraj
        txt = ''.join(lines)
        # add parm and trajin lines
        txt = 'parm ' + parm_dir + '\n' + \
              'trajin ' + trajin_dir + '\n' + \
              txt

        state = pt.datafiles.load_cpptraj_output(txt, dtype='state')
        state.run()
        cpp_data = state.datasetlist
        cpp_vectors = cpp_data.grep('vector', mode='dtype').values
        cpp_matired = cpp_data.grep('matrix', mode='dtype')['matired']

        # assert between pytraj's data_vec and cpptraj's cpp_vectors
        aa_eq(data_vec, cpp_vectors)

        # from a 2D array of integers
        aa_eq(data_vec_2, cpp_vectors)

        # test ired vector with ired matrix
        # open file

        with open('data/ired_reduced.in', 'r') as fh:
            text = ''.join(fh.readlines())
        state2 = pt.load_batch(traj, text)
        state2.run()

        data = pt.ired_vector_and_matrix(traj, nh_indices, order=2)
        data_vec_3 = data[0]
        assert len(data_vec_3) == 126, 'must have 126 vectors'
        matired = data[1]
        # TODO: know why??
        matired /= matired[0, 0]
        aa_eq(data_vec_3, cpp_vectors)
        assert pt.tools.rmsd(matired.flatten(),
                             cpp_matired.values) < 1E-6, 'matired'
Esempio n. 9
0
File: rdc.py Progetto: n-salvi/adaMD
def RDC(trajfiles, topfile, rdc_types, masks, step=1, seg=None):
    results = dict()
    for n, tr in enumerate(trajfiles):
        traj = pt.iterload(tr, topfile, frame_slice=(0, -1, step))
        if seg==None:
            residues = [r.index+1 for r in traj.topology.residues if r.name!='PRO' and r.index>0]
        else:
            residues = [r.index+1 for r in traj.topology.residues
                        if r.name!='PRO' and r.index>=1 and r.index+1>=seg[0] and r.index+1<=seg[1]]
        temp = dict()
        Aa = []
        Ar = []
        eigx = []
        eigy = []
        eigz = []
        alpha = []
        gamma = []
        beta = []

        for f, frame in enumerate(traj):
            pt.write_traj("temp.pdb", frame, top=traj.top, overwrite=True)
            if seg==None:
                os.system("pales -pdb temp.pdb > pales.out")
            else:
                os.system("pales -pdb temp.pdb -s1 "+str(seg[0])+" -sN "+str(seg[1])+" > pales.out")
            os.system("grep \"DATA EIGENVALUES (Sxx_d,Syy_d,Szz_d)\" pales.out > eigenvalues.out")
            with open('eigenvalues.out', 'r') as tf:
                data = tf.readlines()
            data = data[0].split()
            Sxx_d=float(data[-3])
            Syy_d=float(data[-2])
            Szz_d=float(data[-1])

            Aa.append(Szz_d)
            Ar.append((2./3.)*(Sxx_d-Syy_d))

            os.system("grep \"DATA EULER_ANGLES\" pales.out > euler.out")
            with open('euler.out', 'r') as tf:
                data = tf.readlines()
            data = data[0].split()
            alpha.append(float(data[-3]))
            beta.append(float(data[-2]))
            gamma.append(float(data[-1]))

            os.system("grep \"DATA EIGENVECTORS X_AXIS\" pales.out > eigenvalues1.out")
            with open('eigenvalues1.out', 'r') as tf:
                data = tf.readlines()
            data = data[0].split()
            eigx.append([float(data[-3]), float(data[-2]), float(data[-1])])

            os.system("grep \"DATA EIGENVECTORS Y_AXIS\" pales.out > eigenvalues2.out")
            with open('eigenvalues2.out', 'r') as tf:
                data = tf.readlines()
            data = data[0].split()
            eigy.append([float(data[-3]), float(data[-2]), float(data[-1])])

            os.system("grep \"DATA EIGENVECTORS Z_AXIS\" pales.out > eigenvalues3.out")
            with open('eigenvalues3.out', 'r') as tf:
                data = tf.readlines()
            data = data[0].split()
            eigz.append([float(data[-3]), float(data[-2]), float(data[-1])])

        R = np.array(Ar)/np.array(Aa)

        #get vectors from traj
        for m, el in enumerate(rdc_types):
            if seg==None:
                indices1 = pt.select_atoms(masks[m][0]+' & !(:1) & !(:PRO)', traj.top)
                indices2 = pt.select_atoms(masks[m][1]+' & !(:1) & !(:PRO)', traj.top)
            else:

                indices1 = np.array([
                    pt.select_atoms(masks[m][0]+' & :'+str(res)+' & !(:PRO)', traj.top)[0]
                    for res in residues #range(seg[0], seg[1]+1)
                    if len(pt.select_atoms(masks[m][0]+' & :'+str(res)+' & !(:PRO)', traj.top))>0])
                indices2 = np.array([
                    pt.select_atoms(masks[m][1]+' & :'+str(res)+' & !(:PRO)', traj.top)[0]
                    for res in residues #range(seg[0], seg[1]+1)
                    if len(pt.select_atoms(masks[m][1]+' & :'+str(res)+' & !(:PRO)', traj.top))>0])
            if el=='CAHA':
                indices2 = indices1+1
            pairs = np.array(list(zip(indices1, indices2)))
            data_vec = va.vector_mask(traj, pairs, dtype='ndarray')
            #calculate theta and phi angles
            thetas = [[angle_between(vec, zaxis) for vec, zaxis in zip(veclist, eigz)] for veclist in data_vec]
            projs = [[projection(vec, zaxis) for vec, zaxis in zip(veclist, eigz)] for veclist in data_vec]
            phis = [[angle_between(vec, xaxis) for vec, xaxis in zip(veclist, eigx)] for veclist in projs]

            #calculate RDC values
            #rPQcub = [np.nanmean([(np.linalg.norm(v)*1e-10)**3 for v in veclist]) for veclist in data_vec]
            #Dmax = [-(gammas[masks[m][0]]*gammas[masks[m][1]]*h*mu_0)/(8*pi**3*rPQ) for rPQ in rPQcub]
            Dmax = -(gammas[masks[m][0]]*gammas[masks[m][1]]*h*mu_0)/(8*pi**3*bond[masks[m][0]+masks[m][1]]**3)
            # temp[el] = {residues[idx]:[Dmax[idx]*(0.5*(3*np.cos(th)**2-1)*Aa[f]+0.75*Ar[f]*np.sin(th)**2*np.cos(2*phis[idx][f]) )
            #             for f, th in enumerate(ths)]
            #                 for idx, ths in enumerate(thetas)}
            temp[el] = {residues[idx]:np.mean([Dmax*(0.5*(3*np.cos(th)**2-1)*Aa[f]+0.75*Ar[f]*np.sin(th)**2*np.cos(2*phis[idx][f]) )
                        for f, th in enumerate(ths)])
                            for idx, ths in enumerate(thetas)}
        results[n] = temp
        with open('rdc_'+str(n)+'.pkl', 'wb') as tf:
            dump(temp, tf)
    return results