Esempio n. 1
0
def run_slater(L, is_cubic):
    for l in L:
        orb_names = range(2 * l + 1)
        num_orbitals = len(orb_names)
        gf_struct = set_operator_structure(spin_names, orb_names, True)
        mkind = get_mkind(True, None)

        F = [3.0 * (0.3**k) for k in range(l + 1)]

        U_mat = U_matrix(l, F, basis='cubic' if is_cubic else 'spherical')
        h_int = h_int_slater(spin_names, orb_names, U_mat, True)

        h_k = np.zeros((num_orbitals, num_orbitals))

        # Quantum numbers
        QN = [
            sum([n(*mkind("up", o)) for o in orb_names], Operator()),  # N_up
            sum([n(*mkind("dn", o)) for o in orb_names], Operator())
        ]  # N_down

        eig_qn, time_qn = partition(h_int, h_k, gf_struct, QN)
        eig_ap, time_ap = partition(h_int, h_k, gf_struct)

        model = "Slater, %i orbitals" % num_orbitals
        model += (" (cubic basis)" if is_cubic else " (spherical basis)")
        print_line(model, 2**(2 * num_orbitals), (len(eig_qn), time_qn),
                   (len(eig_ap), time_ap))
Esempio n. 2
0
def run_slater(L,is_cubic):
    for l in L:
        orb_names = range(2*l+1)
        num_orbitals = len(orb_names)
        gf_struct = set_operator_structure(spin_names,orb_names,True)
        mkind = get_mkind(True,None)

        F = [3.0*(0.3**k) for k in range(l+1)]

        U_mat = U_matrix(l,F,basis='cubic' if is_cubic else 'spherical')
        h_int = h_int_slater(spin_names,orb_names,U_mat,True)

        h_k = np.zeros((num_orbitals,num_orbitals))

        # Quantum numbers
        QN = [sum([n(*mkind("up",o)) for o in orb_names],Operator()),   # N_up
              sum([n(*mkind("dn",o)) for o in orb_names],Operator())]   # N_down

        eig_qn,time_qn = partition(h_int,h_k,gf_struct,QN)
        eig_ap,time_ap = partition(h_int,h_k,gf_struct)

        model = "Slater, %i orbitals"%num_orbitals
        model += (" (cubic basis)" if is_cubic else " (spherical basis)")
        print_line(model,2**(2*num_orbitals),(len(eig_qn),time_qn),(len(eig_ap),time_ap))
Esempio n. 3
0
spin_names = ("up","dn")
cubic_names = map(str,range(2*L+1))
U_mat = U_matrix(L, radial_integrals=[F0,F2], basis="spherical")

# Parameters
p = {}
p["verbosity"] = 0
p["length_cycle"] = 50
p["n_warmup_cycles"] = 0
p["n_cycles"] = 0

# Block structure of GF
gf_struct = set_operator_structure(spin_names,cubic_names,False)

# Local Hamiltonian
H = h_int_slater(spin_names,cubic_names,U_mat,False)

# Observables
N = N_op(spin_names,cubic_names,False)
S2 = S2_op(spin_names,cubic_names,False)
Sz = S_op('z',spin_names,cubic_names,False)
L2 = L2_op(spin_names,cubic_names,False)
Lz = L_op('z',spin_names,cubic_names,False)
LS = LS_op(spin_names,cubic_names,False)

# Additional splitting terms to lift the degeneracies
H += 0.22*Sz
H += 0.33*Lz

# Construct the solver
S = SolverCore(beta=beta, gf_struct=gf_struct, n_iw=1025, n_tau=10000)
Esempio n. 4
0
def five_plus_five(use_interaction=True):

    results_file_name = "5_plus_5." + ("int."
                                       if use_interaction else "") + "h5"

    # Block structure of GF
    L = 2  # d-orbital
    spin_names = ("up", "dn")
    orb_names = cubic_names(L)

    # Input parameters
    beta = 40.
    mu = 26

    U = 4.0
    J = 0.7
    F0 = U
    F2 = J * (14.0 / (1.0 + 0.63))
    F4 = F2 * 0.63

    # Dump the local Hamiltonian to a text file (set to None to disable dumping)
    H_dump = "H.txt"
    # Dump Delta parameters to a text file (set to None to disable dumping)
    Delta_dump = "Delta_params.txt"

    # Hybridization function parameters
    # Delta(\tau) is diagonal in the basis of cubic harmonics
    # Each component of Delta(\tau) is represented as a list of single-particle
    # terms parametrized by pairs (V_k,\epsilon_k).
    delta_params = {
        "xy": {
            'V': 0.2,
            'e': -0.2
        },
        "yz": {
            'V': 0.2,
            'e': -0.15
        },
        "z^2": {
            'V': 0.2,
            'e': -0.1
        },
        "xz": {
            'V': 0.2,
            'e': 0.05
        },
        "x^2-y^2": {
            'V': 0.2,
            'e': 0.4
        }
    }

    atomic_levels = {
        ('up_xy', 0): -0.2,
        ('dn_xy', 0): -0.2,
        ('up_yz', 0): -0.15,
        ('dn_yz', 0): -0.15,
        ('up_z^2', 0): -0.1,
        ('dn_z^2', 0): -0.1,
        ('up_xz', 0): 0.05,
        ('dn_xz', 0): 0.05,
        ('up_x^2-y^2', 0): 0.4,
        ('dn_x^2-y^2', 0): 0.4
    }

    n_iw = 1025
    n_tau = 10001

    p = {}
    p["max_time"] = -1
    p["random_name"] = ""
    p["random_seed"] = 123 * mpi.rank + 567
    p["length_cycle"] = 50
    #p["n_warmup_cycles"] = 5000
    p["n_warmup_cycles"] = 500
    p["n_cycles"] = int(1.e1 / mpi.size)
    #p["n_cycles"] = int(5.e5 / mpi.size)
    #p["n_cycles"] = int(5.e6 / mpi.size)
    p["partition_method"] = "autopartition"
    p["measure_G_tau"] = True
    p["move_shift"] = True
    p["move_double"] = True
    p["measure_pert_order"] = False
    p["performance_analysis"] = False
    p["use_trace_estimator"] = False

    mpi.report("Welcome to 5+5 (5 orbitals + 5 bath sites) test.")

    gf_struct = set_operator_structure(spin_names, orb_names, False)
    mkind = get_mkind(False, None)

    H = Operator()

    if use_interaction:
        # Local Hamiltonian
        U_mat = U_matrix(L, [F0, F2, F4], basis='cubic')
        H += h_int_slater(spin_names, orb_names, U_mat, False, H_dump=H_dump)
    else:
        mu = 0.

    p["h_int"] = H

    # Quantum numbers (N_up and N_down)
    QN = [Operator(), Operator()]
    for cn in orb_names:
        for i, sn in enumerate(spin_names):
            QN[i] += n(*mkind(sn, cn))
    if p["partition_method"] == "quantum_numbers": p["quantum_numbers"] = QN

    mpi.report("Constructing the solver...")

    # Construct the solver
    S = SolverCore(beta=beta, gf_struct=gf_struct, n_tau=n_tau, n_iw=n_iw)

    mpi.report("Preparing the hybridization function...")

    H_hyb = Operator()

    # Set hybridization function
    if Delta_dump: Delta_dump_file = open(Delta_dump, 'w')
    for sn, cn in product(spin_names, orb_names):
        bn, i = mkind(sn, cn)
        V = delta_params[cn]['V']
        e = delta_params[cn]['e']

        delta_w = Gf(mesh=MeshImFreq(beta, 'Fermion', n_iw), target_shape=[])
        delta_w << (V**2) * inverse(iOmega_n - e)

        S.G0_iw[bn][i, i] << inverse(iOmega_n + mu - atomic_levels[(bn, i)] -
                                     delta_w)

        cnb = cn + '_b'  # bath level
        a = sn + '_' + cn
        b = sn + '_' + cn + '_b'

        H_hyb += ( atomic_levels[(bn,i)] - mu ) * n(a, 0) + \
            n(b,0) * e + V * ( c(a,0) * c_dag(b,0) + c(b,0) * c_dag(a,0) )

        # Dump Delta parameters
        if Delta_dump:
            Delta_dump_file.write(bn + '\t')
            Delta_dump_file.write(str(V) + '\t')
            Delta_dump_file.write(str(e) + '\n')

    if mpi.is_master_node():
        filename_ham = 'data_Ham%s.h5' % ('_int' if use_interaction else '')
        with HDFArchive(filename_ham, 'w') as arch:
            arch['H'] = H_hyb + H
            arch['gf_struct'] = gf_struct
            arch['beta'] = beta

    mpi.report("Running the simulation...")

    # Solve the problem
    S.solve(**p)

    # Save the results
    if mpi.is_master_node():
        Results = HDFArchive(results_file_name, 'w')
        Results['G_tau'] = S.G_tau
        Results['G0_iw'] = S.G0_iw
        Results['use_interaction'] = use_interaction
        Results['delta_params'] = delta_params
        Results['spin_names'] = spin_names
        Results['orb_names'] = orb_names

        import __main__
        Results.create_group("log")
        log = Results["log"]
        log["version"] = version.version
        log["triqs_hash"] = version.triqs_hash
        log["cthyb_hash"] = version.cthyb_hash
        log["script"] = inspect.getsource(__main__)
Esempio n. 5
0
# Parameters
p = {}
p["max_time"] = -1
p["random_name"] = ""
p["random_seed"] = 123 * mpi.rank + 567
p["length_cycle"] = 50
p["n_warmup_cycles"] = 50
p["n_cycles"] = 5000
p["measure_g_l"] = True
p["move_double"] = False

# Block structure of GF
gf_struct = set_operator_structure(spin_names, cubic_names, False)

# Local Hamiltonian
H = h_int_slater(spin_names, cubic_names, U_mat, False)

# Construct the solver
S = SolverCore(beta=beta, gf_struct=gf_struct, n_iw=1025, n_tau=100000)

# Set hybridization function
delta_w = GfImFreq(indices=[0], beta=beta)
delta_w << (half_bandwidth / 2.0)**2 * SemiCircular(half_bandwidth)
for name, g0 in S.G0_iw:
    g0 << inverse(iOmega_n + mu - delta_w)

S.solve(h_int=H, **p)

if mpi.is_master_node():
    with HDFArchive("slater.out.h5", 'w') as Results:
        Results["G_tau"] = S.G_tau
Esempio n. 6
0
# GF structure
gf_struct = set_operator_structure(spin_names, orb_names, False)

mkind = get_mkind(False, None)
# Conversion from TRIQS to Pomerol notation for operator indices
index_converter = {
    mkind(sn, bn): ("atom", bi, "down" if sn == "dn" else "up")
    for sn, (bi, bn) in product(spin_names, enumerate(orb_names))
}

# Make PomerolED solver object
ed = PomerolED(index_converter, verbose=True)

# Hamiltonian
H = h_int_slater(spin_names, orb_names, U_mat, False)

# Number of particles
N = N_op(spin_names, orb_names, False)

# z-component of spin
Sz = S_op('z', spin_names, orb_names, False)

# z-component of angular momentum
Lz = L_op('z', spin_names, orb_names, off_diag=False, basis='spherical')

# Double check that we are actually using integrals of motion
h_comm = lambda op: H * op - op * H
assert h_comm(N).is_zero()
assert h_comm(Sz).is_zero()
assert h_comm(Lz).is_zero()
Esempio n. 7
0
          map_operator_structure=map_operator_structure)
Lz = L_op('z',
          spin_names,
          orb_names,
          map_operator_structure=map_operator_structure,
          basis='spherical')
Jz = Sz + Lz

# LS coupling term
# LS = ls_op(spin_names, orb_names, off_diag=off_diag, basis = 'spherical')

# Hamiltonian
# U_mat = U_matrix(L, radial_integrals = [F0,F2,F4], basis='spherical')
U_mat = U_matrix(L, U_int=U, J_hund=J, basis='spherical')
H_int = h_int_slater(spin_names,
                     orb_names,
                     U_mat,
                     map_operator_structure=map_operator_structure)

# H -= mu*N
# H += ls_coupling * LS

# Double check that we are actually using integrals of motion
# h_comm = lambda op: H*op - op*H
# str_if_commute = lambda op: "= 0" if h_comm(op).is_zero() else "!= 0"

# print "Check integrals of motion:"
# print "[H, N]", str_if_commute(N)
# print "[H, Sz]", str_if_commute(Sz)
# print "[H, Lz]", str_if_commute(Lz)
# print "[H, Jz]", str_if_commute(Jz)
Esempio n. 8
0
p["n_cycles"] = 30000
p["partition_method"] = "autopartition"
p["measure_g_tau"] = True
p["move_shift"] = True
p["measure_pert_order"] = False
p["performance_analysis"] = False
p["use_trace_estimator"] = False

mpi.report("Welcome to 5+5 (5 orbitals + 5 bath sites) test.")

gf_struct = set_operator_structure(spin_names, orb_names, False)
mkind = get_mkind(False, None)

# Local Hamiltonian
U_mat = U_matrix(L, [F0, F2, F4], basis='cubic')
H = h_int_slater(spin_names, orb_names, U_mat, False, H_dump=H_dump)

p["h_int"] = H

# Quantum numbers (N_up and N_down)
QN = [Operator(), Operator()]
for cn in orb_names:
    for i, sn in enumerate(spin_names):
        QN[i] += n(*mkind(sn, cn))
if p["partition_method"] == "quantum_numbers": p["quantum_numbers"] = QN

mpi.report("Constructing the solver...")

# Construct the solver
S = SolverCore(beta=beta, gf_struct=gf_struct, n_tau=n_tau, n_iw=n_iw)
Esempio n. 9
0
p["partition_method"] = "autopartition"
p["measure_g_tau"] = True
p["move_shift"] = True
p["measure_pert_order"] = False
p["performance_analysis"] = False
p["use_trace_estimator"] = False


mpi.report("Welcome to 5+5 (5 orbitals + 5 bath sites) test.")

gf_struct = set_operator_structure(spin_names,orb_names,False)
mkind = get_mkind(False,None)

# Local Hamiltonian
U_mat = U_matrix(L,[F0,F2,F4],basis='cubic')
H = h_int_slater(spin_names,orb_names,U_mat,False,H_dump=H_dump)

p["h_int"] = H

# Quantum numbers (N_up and N_down)
QN=[Operator(),Operator()]
for cn in orb_names:
    for i, sn in enumerate(spin_names):
        QN[i] += n(*mkind(sn,cn))
if p["partition_method"] == "quantum_numbers": p["quantum_numbers"] = QN

mpi.report("Constructing the solver...")

# Construct the solver
S = SolverCore(beta=beta, gf_struct=gf_struct, n_tau=n_tau, n_iw=n_iw)
Esempio n. 10
0
    print "Block structure of single-particle Green's functions:", gf_struct
    print "index_converter:", index_converter

# Operators
N = N_op(spin_names, orb_names, off_diag=off_diag)
Sz = S_op('z', spin_names, orb_names, off_diag=off_diag)
Lz = L_op('z', spin_names, orb_names, off_diag=off_diag, basis='spherical')
Jz = Sz + Lz

# LS coupling term
LS = ls_op(spin_names, orb_names, off_diag=off_diag, basis='spherical')

# Hamiltonian
# U_mat = U_matrix(L, radial_integrals = [F0,F2,F4], basis='spherical')
U_mat = U_matrix(L, U_int=U, J_hund=J, basis='spherical')
H = h_int_slater(spin_names, orb_names, U_mat, off_diag=off_diag)

H -= mu * N
H += ls_coupling * LS

# Double check that we are actually using integrals of motion
h_comm = lambda op: H * op - op * H
str_if_commute = lambda op: "= 0" if h_comm(op).is_zero() else "!= 0"

print "Check integrals of motion:"
print "[H, N]", str_if_commute(N)
print "[H, Sz]", str_if_commute(Sz)
print "[H, Lz]", str_if_commute(Lz)
print "[H, Jz]", str_if_commute(Jz)

#####################