Esempio n. 1
0
def dt_to_other_timezone(dt: datetime,
                         destination_timezone_name: str,
                         origin_timezone_name: str = 'UTC') -> datetime:
    """
    The only, safest, way I know to convert datetime object from one timezone to
    another while accounting for things like Daylight Saving Time
    (also known as "Summer Time") and "leap" stuff.

    Tried many many other ways and anything that work with pure offsets is plain bad.
    Must work with proper tx names and pytz is the best way on Python.

    Offsets plainly don't work because DST-vs-no-DST varies based on specific locale.

    For example, US state of Arizona, while being part of `US/Mountain` time zone
    does NOT observe Daylight Saving Time, like rest of that time zone. As a result,
    it's effectively on US Mountain time zone in the winter and in US Pacific (right?)
    for most of rest of the year.

    Then, add to that the fact that Summer Time starts and ends on different dates
    depending on a country and, as a result, noon in San Diego, California is not
    guaranteed to be noon in Tijuana - a city only 30 kilometers *South*

    As a result of all the above, learned to specify timezone names as specifically
    as possible. Say, "America/Los_Angeles" vs "US/Pacific" and work only with
    time-zone-aware datetimes and only with timezones that are timezone-name aware
    and support something like Olson timezone DB (https://en.wikipedia.org/wiki/Tz_database)

    :param datetime.datetime dt:
        Some datetime object. May be timezone-naive, in which case origin timezone
        name is required and is used to localize the incoming dt before tz conversion.
    :param str destination_timezone_name:
        'UTC' or some standard tz name string like "America/Los_Angeles"
    :param str origin_timezone_name:
        'UTC' (default) or some standard tz name string like "Europe/Paris"
    :return:
    """
    from pytz import UTC, timezone as Timezone
    from pytz.tzinfo import DstTzInfo

    if dt.tzinfo is None:
        assert origin_timezone_name
        origin_tz = Timezone(origin_timezone_name)
        # this step properly bakes together origin tz and dt
        tz_local_dt = origin_tz.localize(dt)
    elif dt.tzinfo == UTC or isinstance(dt.tzinfo, DstTzInfo):
        # this is an easy way out. These TZs properly react to
        # .normalize() method so no need to do anything with dt
        tz_local_dt = dt
    else:
        # We are here if tzinfo is set on dt,
        # but we don't know what the implementation is
        # (possibly some offset-based thing)
        # and, thus don't trust it to do the right thing
        # Hence, flipping it to UTC-based safe intermediate state
        # which does not have daylight saving time issues.
        tz_local_dt = dt.astimezone(UTC)

    destination_tz = Timezone(destination_timezone_name)

    # this step properly (with account for Daylight saving time) moves
    # dt to other timezone.
    return destination_tz.normalize(tz_local_dt)
Esempio n. 2
0
def get_clearsky_irradiance(start_time: datetime.datetime = None,
                            end_time: datetime.datetime = None,
                            timezone: pytz.timezone = None,
                            latitude: float = None,
                            longitude: float = None,
                            sun_zenith: pd.DataFrame = None,
                            granularity: int = 60,
                            clearsky_estimation_method: str = 'pysolar',
                            google_api_key: str = None):

    if (clearsky_estimation_method == 'pysolar' or google_api_key == None):

        ##################################################################################
        #
        # Pandas .apply based code, but it is slower than while loop
        # from helpers import granularity_to_freq
        #
        # datetime_series = pd.date_range(start_time, end_time, freq=granularity_to_freq(granularity))
        # datetime_series_localized = datetime_series.tz_localize(timezone)
        # data = pd.DataFrame({'time':datetime_series_localized})
        # data['altitude_deg'] = data['time'].apply(lambda timestamp: pysolar.solar.get_altitude(latitude, longitude, timestamp))
        # data['clearsky'] = data.apply(lambda row: pysolar.solar.radiation.get_radiation_direct(row['time'], row['altitude_deg']), axis=1)
        # data['time'] = data['time'].apply(lambda x: x.replace(tzinfo=pytz.utc).replace(tzinfo=None))
        ##################################################################################

        # localizing the datetime based on the timezone
        start: datetime.datetime = timezone.localize(start_time)
        end: datetime.datetime = timezone.localize(end_time)

        # create arrays to store time and irradiance
        clearsky: List[int] = []
        time_: List[datetime.datetime] = []

        # go through all the hours between the two dates
        while start <= end:

            # get the altitude degree for the given location
            altitude_deg: float = pysolar.solar.get_altitude(
                latitude, longitude, start)

            # get the clearsky based on the time and altitude
            clear_sky: float = pysolar.solar.radiation.get_radiation_direct(
                start, altitude_deg)

            # removing the timezone information
            dt: datetime.datetime = start.replace(tzinfo=pytz.utc).replace(
                tzinfo=None)

            # saving the data in the lists
            clearsky.append(clear_sky)
            time_.append(dt)

            # increasing the time by 1 hrs, normazlizing it to handle DST
            start = timezone.normalize(start +
                                       datetime.timedelta(seconds=granularity))

        # create dataframe from lists
        irradiance: pd.DataFrame = pd.DataFrame({
            'time': time_,
            'clearsky': clearsky
        })

    elif (clearsky_estimation_method == 'lau_model'
          and google_api_key != None):

        # use google maps python api to get elevation
        gmaps = googlemaps.Client(key=google_api_key)
        elevation_api_response: list = gmaps.elevation((latitude, longitude))
        elevation_km: float = elevation_api_response[0]['elevation'] / 1000

        # create a date_range and set it as a time column in a dataframe
        datetime_series = pd.date_range(start_time,
                                        end_time,
                                        freq=granularity_to_freq(granularity))
        # datetime_series_localized = datetime_series.tz_localize(timezone)
        irradiance = pd.DataFrame({'time': datetime_series})

        # based on "E. G. Laue. 1970. The Measurement of Solar Spectral Irradiance at DifferentTerrestrial Elevations.Solar Energy13 (1970)",
        # Check details on this model on Section 2.4 on PVeducation.org
        irradiance['air_mass'] = 1 / (
            np.cos(sun_zenith) +
            0.50572 * pow(96.07995 - np.rad2deg(sun_zenith), -1.6364))
        irradiance['clearsky_direct'] = 1.361 * (
            (1 - 0.14 * elevation_km) * pow(0.7, irradiance['air_mass']**0.678)
            + 0.14 * elevation_km)
        irradiance['clearsky'] = 1000 * 1.1 * irradiance['clearsky_direct']

        # replace nan with 0 and keep only time and clearsky columns
        irradiance['clearsky'] = irradiance['clearsky'].fillna(0)
        irradiance = irradiance[['time', 'clearsky']]

    else:
        raise ValueError(
            'Invalid argument for clearsky_estimation_method or google_api_key.'
        )

    return irradiance