Esempio n. 1
0
    def __init__(self,prescale=0.25,weights=WEIGHTS,default=True):
        ''' Initialize the detector with default parameters. '''
        # Look for very small faces
        self.fd = cd.CascadeDetector(min_size=(30,30))
        
        # Look for larger heads and shoulders
        self.hd = cd.CascadeDetector(cd.UPPERBODY_MCS_CASCADE,min_size=(60,60))

        # Scale
        self.prescale = prescale
        
        # Returns a detection that can be used as a default if no other detections are avalible
        self.default = default
        
        # This regression will provide a quality score for the detector.
        self.quality = pv.LogisticRegression()
        self.quality.params = weights
Esempio n. 2
0
def facedetect():
    faceDetector = cd.CascadeDetector()
    eyeDetector = ed.FilterEyeLocator()

    im = pv.Image("testImage.jpg", bw_annotate=True)
    faces = faceDetector(im)
    eyes = eyeDetector(im, faces)
    for face, eye1, eye2 in eyes:
        im.annotatePolygon(face.asPolygon(), width=4)
        im.annotatePoints([eye1, eye2])

    im.show(delay=0)
Esempio n. 3
0
def pyvision_detect_faces(image):
    global face_detect
    if face_detect is None:
        face_detect = cd.CascadeDetector()

    # print "DETECTING FACES"
    if not hasattr(image, "asOpenCV"):
        if hasattr(image,
                   "shape"):  # numpy ndarray, assuming it comes from cv2
            image = cvu.cv2ndarray_to_iplimage(image)
        image = pv.Image(image, bw_annotate=True)
    faces = face_detect(image)
    # print "DETECTING FACES DONE."
    return faces
Esempio n. 4
0
    def test_ASEFEyeLocalization(self):
        '''
        This trains the FaceFinder on the scraps database.
        '''
        # Load a face database
        ssdb = ScrapShotsDatabase()
                
        # Create a face detector 
        face_detector = cd.CascadeDetector()

        # Create an eye locator
        eye_locator = FilterEyeLocator()
        
        # Create an eye detection test
        edt = EyeDetectionTest(name='asef_scraps')

        #print "Testing..."
        for face_id in ssdb.keys():
            face = ssdb[face_id]
            im = face.image

            # Detect the faces
            faces = face_detector.detect(im)
            
            # Detect the eyes
            pred_eyes = eye_locator(im,faces)
            
            truth_eyes = [[face.left_eye,face.right_eye]]
            pred_eyes = [ [leye,reye] for _,leye,reye in pred_eyes]
            
            # Add to eye detection test
            edt.addSample(truth_eyes, pred_eyes, im=im, annotate=False)
        
        edt.createSummary()
        self.assertAlmostEqual( edt.face_rate ,   0.97109826589595372, delta = 0.01 ) # Updated numbers for OpenCV 2.0
        self.assertAlmostEqual( edt.both25_rate , 0.82658959537572252, delta = 0.01 )
        self.assertAlmostEqual( edt.both10_rate , 0.47976878612716761, delta = 0.01 )
        self.assertAlmostEqual( edt.both05_rate , 0.30635838150289019, delta = 0.01 )

        
    
    
        
Esempio n. 5
0
import pyvision as pv
import pyvision.face.CascadeDetector as cd

if __name__ == '__main__':

    detector = cd.CascadeDetector()

    cam = pv.Webcam()
    for frame in cam:
        rects = detector(frame)
        for rect in rects:
            frame.annotateRect(rect)
        frame.show(delay=30)