Esempio n. 1
0
 def add_field_diag(self):
     """Add a picmi FieldDiagnostic to the simulation."""
     mwxrun.simulation.add_diagnostic(
         picmi.FieldDiagnostic(
             grid=self.kwargs['grid'],
             period=self.kwargs.pop('period', self.diag_steps),
             data_list=self.kwargs['data_list'],
             name=self.kwargs['name'],
             write_dir=self.kwargs.pop('write_dir', self.write_dir)))
Esempio n. 2
0
##########################
# physics components
##########################

electrons = picmi.Species(
    particle_type='electron', name='electrons'
)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name = 'diag1',
    grid = grid,
    period = 10,
    data_list = ['phi'],
    write_dir = '.',
    warpx_file_prefix = f'Python_particle_attr_access_plt_{color}'
)

##########################
# simulation setup
##########################

sim = picmi.Simulation(
    solver = solver,
    time_step_size = dt,
    max_steps = max_steps,
    verbose = 1
)
Esempio n. 3
0
    position = [0., 0., position_z],
    normal_vector = [0, 0, 1])

# Electromagnetic solver
solver = picmi.ElectromagneticSolver(
    grid = grid,
    method = 'Yee',
    cfl = 1.,
    divE_cleaning = 0)

# Diagnostics
diag_field_list = ['B', 'E', 'J', 'rho']
field_diag = picmi.FieldDiagnostic(
    name = 'diag1',
    grid = grid,
    period = 10,
    data_list = diag_field_list,
    warpx_dump_rz_modes = 1,
    write_dir = '.',
    warpx_file_prefix = 'Python_LaserAccelerationRZ_plt')
diag_particle_list = ['weighting', 'momentum']
particle_diag = picmi.ParticleDiagnostic(
    name = 'diag1',
    period = 10,
    species = [electrons, beam],
    data_list = diag_particle_list,
    write_dir = '.',
    warpx_file_prefix = 'Python_LaserAccelerationRZ_plt')

# Set up simulation
sim = picmi.Simulation(
    solver = solver,
Esempio n. 4
0
                                   warpx_self_fields_verbosity=0)

##########################
# physics components
##########################

electrons = picmi.Species(particle_type='electron', name='electrons')

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=10,
    data_list=['phi'],
    write_dir='.',
    warpx_file_prefix=
    f"Python_particle_attr_access_{'unique_' if args.unique else ''}plt")

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       time_step_size=dt,
                       max_steps=max_steps,
                       verbose=1)

sim.add_species(electrons,
                layout=picmi.GriddedLayout(n_macroparticle_per_cell=[0, 0],
                                                fill_in = True)

beam = picmi.Species(particle_type='electron', name='beam', initial_distribution=beam_distribution)
plasma = picmi.Species(particle_type='electron', name='plasma', initial_distribution=plasma_distribution)

sim = picmi.Simulation(solver = solver,
                       max_steps = max_steps,
                       verbose = 1,
                       warpx_current_deposition_algo = 'esirkepov')

sim.add_species(beam, layout=picmi.GriddedLayout(grid=grid, n_macroparticle_per_cell=number_per_cell_each_dim))
sim.add_species(plasma, layout=picmi.GriddedLayout(grid=grid, n_macroparticle_per_cell=number_per_cell_each_dim))

field_diag = picmi.FieldDiagnostic(name = 'diag1',
                                   grid = grid,
                                   period = max_steps,
                                   data_list = ['Ex', 'Ey', 'Ez', 'Jx', 'Jy', 'Jz', 'part_per_cell'],
                                   write_dir = '.',
                                   warpx_file_prefix = 'Python_PlasmaAcceleration_plt')

part_diag = picmi.ParticleDiagnostic(name = 'diag1',
                                     period = max_steps,
                                     species = [beam, plasma],
                                     data_list = ['ux', 'uy', 'uz', 'weighting'])

sim.add_diagnostic(field_diag)
sim.add_diagnostic(part_diag)

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
#sim.write_input_file(file_name = 'inputs_from_PICMI')
Esempio n. 6
0
grid = picmi.Cartesian3DGrid(number_of_cells = [nx, ny, nz],
                             lower_bound = [xmin, ymin, zmin],
                             upper_bound = [xmax, ymax, zmax],
                             lower_boundary_conditions = ['periodic', 'periodic', 'periodic'],
                             upper_boundary_conditions = ['periodic', 'periodic', 'periodic'],
                             moving_window_velocity = [0., 0., 0.],
                             warpx_max_grid_size = 32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(grid = grid,
                                    period = diagnostic_interval,
                                    data_list = ['Ex', 'Jx'])

part_diag1 = picmi.ParticleDiagnostic(period = diagnostic_interval,
                                      species = [electrons],
                                      data_list = ['weighting', 'ux', 'Ex'])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver = solver,
                       max_steps = max_steps,
                       verbose = 1,
                       warpx_current_deposition_algo = 'direct')
Esempio n. 7
0
solver = picmi.ElectromagneticSolver(grid=grid, cfl=cfl)

embedded_boundary = picmi.EmbeddedBoundary(
    implicit_function=
    "-max(max(max(x-12.5e-6,-12.5e-6-x),max(y-12.5e-6,-12.5e-6-y)),max(z-(-6.15e-5),-8.65e-5-z))"
)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=diagnostic_intervals,
    data_list=['Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz'],
    write_dir='.',
    warpx_file_prefix='Python_restart_eb_plt')

checkpoint = picmi.Checkpoint(name='chkpoint',
                              period=diagnostic_intervals,
                              write_dir='.',
                              warpx_file_min_digits=5,
                              warpx_file_prefix=f'Python_restart_eb_chk')

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
    lower_bound=[xmin, ymin],
    upper_bound=[xmax, ymax],
    lower_boundary_conditions=['periodic', 'periodic'],
    upper_boundary_conditions=['periodic', 'periodic'],
    moving_window_velocity=[0., 0., 0.],
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(name='diag1',
                                    grid=grid,
                                    period=diagnostic_intervals,
                                    data_list=['Ex', 'Jx'],
                                    write_dir='.',
                                    warpx_file_prefix='Python_Langmuir_2d_plt')

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=diagnostic_intervals,
                                      species=[electrons],
                                      data_list=['weighting', 'ux'])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
Esempio n. 9
0
n_cavity = 30
L_cavity = n_cavity * unit

embedded_boundary = picmi.EmbeddedBoundary(
    implicit_function=
    "max(max(max(x-L_cavity/2,-L_cavity/2-x),max(y-L_cavity/2,-L_cavity/2-y)),max(z-L_cavity/2,-L_cavity/2-z))",
    L_cavity=L_cavity)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=1,
    data_list=['Ex'],
    write_dir='.',
    warpx_file_prefix="embedded_boundary_python_API_plt")

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       warpx_embedded_boundary=embedded_boundary,
                       verbose=1)

sim.add_diagnostic(field_diag)
Esempio n. 10
0
    def setup_run(self):
        """Setup simulation components."""

        #######################################################################
        # Set geometry and boundary conditions                                #
        #######################################################################

        self.grid = picmi.Cartesian1DGrid(
            number_of_cells=[self.nz],
            warpx_max_grid_size=128,
            lower_bound=[0],
            upper_bound=[self.gap],
            lower_boundary_conditions=['dirichlet'],
            upper_boundary_conditions=['dirichlet'],
            lower_boundary_conditions_particles=['absorbing'],
            upper_boundary_conditions_particles=['absorbing'],
            warpx_potential_hi_z=self.voltage,
        )

        #######################################################################
        # Field solver                                                        #
        #######################################################################

        self.solver = picmi.ElectrostaticSolver(grid=self.grid,
                                                method='Multigrid',
                                                required_precision=1e-12,
                                                warpx_self_fields_verbosity=0)

        #######################################################################
        # Particle types setup                                                #
        #######################################################################

        self.electrons = picmi.Species(
            particle_type='electron',
            name='electrons',
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.elec_temp / constants.m_e)
                ] * 3,
            ))
        self.ions = picmi.Species(
            particle_type='He',
            name='he_ions',
            charge='q_e',
            mass=self.m_ion,
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.gas_temp / self.m_ion)
                ] * 3,
            ))

        #######################################################################
        # Collision  initialization                                           #
        #######################################################################

        cross_sec_direc = '../../../../warpx-data/MCC_cross_sections/He/'
        mcc_electrons = picmi.MCCCollisions(
            name='coll_elec',
            species=self.electrons,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            background_mass=self.ions.mass,
            scattering_processes={
                'elastic': {
                    'cross_section':
                    cross_sec_direc + 'electron_scattering.dat'
                },
                'excitation1': {
                    'cross_section': cross_sec_direc + 'excitation_1.dat',
                    'energy': 19.82
                },
                'excitation2': {
                    'cross_section': cross_sec_direc + 'excitation_2.dat',
                    'energy': 20.61
                },
                'ionization': {
                    'cross_section': cross_sec_direc + 'ionization.dat',
                    'energy': 24.55,
                    'species': self.ions
                },
            })

        mcc_ions = picmi.MCCCollisions(
            name='coll_ion',
            species=self.ions,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            scattering_processes={
                'elastic': {
                    'cross_section': cross_sec_direc + 'ion_scattering.dat'
                },
                'back': {
                    'cross_section': cross_sec_direc + 'ion_back_scatter.dat'
                },
                # 'charge_exchange' : {
                #    'cross_section' : cross_sec_direc+'charge_exchange.dat'
                # }
            })

        #######################################################################
        # Initialize simulation                                               #
        #######################################################################

        self.sim = picmi.Simulation(
            solver=self.solver,
            time_step_size=self.dt,
            max_steps=self.max_steps,
            warpx_collisions=[mcc_electrons, mcc_ions],
            warpx_load_balance_intervals=self.max_steps // 5000,
            verbose=self.test)

        self.sim.add_species(self.electrons,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))
        self.sim.add_species(self.ions,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))

        #######################################################################
        # Add diagnostics for the CI test to be happy                         #
        #######################################################################

        field_diag = picmi.FieldDiagnostic(
            name='diag1',
            grid=self.grid,
            period=0,
            data_list=['rho_electrons', 'rho_he_ions'],
            write_dir='.',
            warpx_file_prefix='Python_background_mcc_1d_plt')
        self.sim.add_diagnostic(field_diag)
Esempio n. 11
0
    upper_boundary_conditions=['none', 'periodic'],
    lower_boundary_conditions_particles=['absorbing', 'periodic'],
    upper_boundary_conditions_particles=['absorbing', 'periodic'],
    moving_window_velocity=[0., 0.],
    warpx_max_grid_size=64)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=diagnostic_intervals,
    data_list=['Ex', 'Ez', 'By', 'Jx', 'Jz', 'part_per_cell'],
    write_dir='.',
    warpx_file_prefix='Python_Langmuir_rz_multimode_plt')

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=diagnostic_intervals,
                                      species=[electrons],
                                      data_list=['weighting', 'momentum'])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=40,
Esempio n. 12
0
                                   warpx_self_fields_verbosity=0)

##########################
# physics components
##########################

electrons = picmi.Species(particle_type='electron', name='electrons')

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=10,
    data_list=['phi'],
    write_dir='.',
    warpx_file_prefix=f'Python_restart_runtime_components_plt')

checkpoint = picmi.Checkpoint(
    name='chkpoint',
    period=5,
    write_dir='.',
    warpx_file_min_digits=5,
    warpx_file_prefix=f'Python_restart_runtime_components_chk')

##########################
# simulation setup
##########################
Esempio n. 13
0
                                   method='Multigrid',
                                   required_precision=1e-7)

embedded_boundary = picmi.EmbeddedBoundary(
    implicit_function="-(x**2+y**2+z**2-radius**2)",
    potential=V_embedded_boundary,
    radius=0.3)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=1,
    data_list=['Ex', 'Ey', 'Ez', 'phi', 'rho'],
    write_dir='.',
    warpx_file_prefix='Python_ElectrostaticSphereEB_plt')

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       time_step_size=dt,
                       max_steps=max_steps,
                       warpx_embedded_boundary=embedded_boundary,
                       warpx_field_gathering_algo='momentum-conserving')

sim.add_diagnostic(field_diag)
Esempio n. 14
0
# Initialize field solver
solver = picmi.ElectromagneticSolver(grid=grid,
                                     cfl=0.95,
                                     method='PSATD',
                                     stencil_order=[nox, noz],
                                     divE_cleaning=1,
                                     divB_cleaning=1,
                                     pml_divE_cleaning=1,
                                     pml_divB_cleaning=1,
                                     warpx_psatd_update_with_rho=True)

# Initialize diagnostics
diag_field_list = ["E", "B"]
field_diag = picmi.FieldDiagnostic(name='diag1',
                                   grid=grid,
                                   period=10,
                                   write_dir='.',
                                   warpx_file_prefix='Python_wrappers_plt',
                                   data_list=diag_field_list)

# Initialize simulation
sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       particle_shape='cubic',
                       warpx_current_deposition_algo='direct',
                       warpx_particle_pusher_algo='boris',
                       warpx_field_gathering_algo='energy-conserving',
                       warpx_use_filter=1)

# Add diagnostics to simulation
sim.add_diagnostic(field_diag)
Esempio n. 15
0
                       verbose=1,
                       warpx_plot_int=max_steps,
                       warpx_current_deposition_algo='esirkepov')

sim.add_species(beam,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))
sim.add_species(plasma,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))

field_diag = picmi.FieldDiagnostic(
    grid=grid,
    period=max_steps,
    data_list=['Ex', 'Ey', 'Ez', 'Jx', 'Jy', 'Jz', 'part_per_cell'],
    write_dir='diags')

part_diag = picmi.ParticleDiagnostic(
    period=max_steps,
    species=[beam, plasma],
    data_list=['ux', 'uy', 'uz', 'weighting', 'Ex', 'Ey', 'Ez'],
    write_dir='diags')

sim.add_diagnostic(field_diag)
sim.add_diagnostic(part_diag)

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
#sim.write_input_file(file_name = 'inputs_from_PICMI')
Esempio n. 16
0
    upper_bound=[xmax, ymax],
    lower_boundary_conditions=['periodic', 'periodic'],
    upper_boundary_conditions=['periodic', 'periodic'],
    moving_window_velocity=[0., 0., 0.],
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name=f'diag{color + 1}',
    grid=grid,
    period=diagnostic_intervals,
    data_list=['Ex', 'Jx'],
    write_dir='.',
    warpx_file_prefix=f'Python_pass_mpi_comm_plt{color + 1}_')

part_diag = picmi.ParticleDiagnostic(name=f'diag{color + 1}',
                                     period=diagnostic_intervals,
                                     species=[electrons],
                                     data_list=['weighting', 'ux'])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
Esempio n. 17
0
proton_beam = picmi.GaussianBunchDistribution(
    n_physical_particles=total_charge / constants.q_e,
    rms_bunch_size=[beam_rms_size, beam_rms_size, beam_rms_size])

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=electron_beam)
protons = picmi.Species(particle_type='proton',
                        name='protons',
                        initial_distribution=proton_beam)

field_diag1 = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=10,
    data_list=args.fields_to_plot,
    warpx_format=args.diagformat,
    write_dir='.',
    warpx_file_prefix='Python_gaussian_beam_plt')

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=10,
                                      species=[electrons, protons],
                                      data_list=['weighting', 'momentum'],
                                      warpx_format=args.diagformat)

sim = picmi.Simulation(solver=solver,
                       max_steps=10,
                       verbose=1,
                       warpx_current_deposition_algo='direct',
                       warpx_use_filter=0)
Esempio n. 18
0
    number_of_cells=[nx, ny, nz],
    lower_bound=[xmin, ymin, zmin],
    upper_bound=[xmax, ymax, zmax],
    lower_boundary_conditions=['periodic', 'periodic', 'open'],
    upper_boundary_conditions=['periodic', 'periodic', 'open'],
    moving_window_velocity=moving_window_velocity,
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, method='CKC', cfl=1.)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(grid=grid,
                                    period=100,
                                    warpx_plot_raw_fields=1,
                                    warpx_plot_raw_fields_guards=1)

part_diag1 = picmi.ParticleDiagnostic(period=100, species=[electrons])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       cfl=1.0,
                       warpx_current_deposition_algo='esirkepov')

sim.add_species(electrons,
Esempio n. 19
0
    warpx_max_grid_size=max_grid_size,
    warpx_blocking_factor=max_grid_size,
    lower_bound=[xmin, ymin],
    upper_bound=[xmax, ymax],
    lower_boundary_conditions=['periodic', 'periodic'],
    upper_boundary_conditions=['periodic', 'periodic'],
)
solver = picmi.ElectromagneticSolver(grid=grid, cfl=cfl)

#################################
######### DIAGNOSTICS ###########
#################################

field_diag = picmi.FieldDiagnostic(name='diag1',
                                   grid=grid,
                                   period=10,
                                   data_list=[],
                                   write_dir='.',
                                   warpx_file_prefix='Python_collisionXZ_plt')

#################################
####### SIMULATION SETUP ########
#################################

sim = picmi.Simulation(
    solver=solver,
    max_steps=max_steps,
    verbose=verbose,
    warpx_serialize_initial_conditions=serialize_initial_conditions,
    warpx_collisions=[collision1, collision2, collision3])

sim.add_species(electrons,
Esempio n. 20
0
proton_beam = picmi.GaussianBunchDistribution(
    n_physical_particles=total_charge / constants.q_e,
    rms_bunch_size=[beam_rms_size, beam_rms_size, beam_rms_size])

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=electron_beam)
protons = picmi.Species(particle_type='proton',
                        name='protons',
                        initial_distribution=proton_beam)

field_diag1 = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=10,
    data_list=['E', 'B', 'J', 'part_per_cell'],
    warpx_format=args.diagformat,
    write_dir='.',
    warpx_file_prefix='Python_gaussian_beam_plt')

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=10,
                                      species=[electrons, protons],
                                      data_list=['weighting', 'momentum'],
                                      warpx_format=args.diagformat)

sim = picmi.Simulation(solver=solver,
                       max_steps=10,
                       verbose=1,
                       warpx_current_deposition_algo='direct',
                       warpx_use_filter=0)
Esempio n. 21
0
    moving_window_velocity = None,
    warpx_max_grid_size = nx//4
)

solver = picmi.ElectrostaticSolver(
    grid=grid, method='Multigrid', required_precision=1e-6
)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name = 'diag1',
    grid = grid,
    period = diagnostic_intervals,
    data_list = ['rho_electrons', 'rho_he_ions', 'phi'],
    write_dir = '.',
    warpx_file_prefix = 'Python_background_mcc_plt'
)

##########################
# simulation setup
##########################

sim = picmi.Simulation(
    solver = solver,
    time_step_size = DT,
    max_steps = max_steps,
    warpx_collisions=[mcc_electrons, mcc_ions]
)
Esempio n. 22
0
    lower_bound=[rmin, zmin],
    upper_bound=[rmax, zmax],
    lower_boundary_conditions=['dirichlet', 'periodic'],
    upper_boundary_conditions=['dirichlet', 'periodic'],
    moving_window_zvelocity=0.,
    warpx_max_grid_size=64)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1., warpx_do_pml=0)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(name='diag1',
                                    grid=grid,
                                    period=diagnostic_interval,
                                    data_list=['E', 'B', 'J', 'part_per_cell'],
                                    warpx_file_prefix='plotfiles/plt')

part_diag1 = picmi.ParticleDiagnostic(
    name='diag1',
    period=diagnostic_interval,
    species=[electrons],
    data_list=['weighting', 'momentum', 'fields'])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=40,
Esempio n. 23
0
    lower_boundary_conditions_particles=['periodic', 'periodic', 'absorbing'],
    upper_boundary_conditions_particles=['periodic', 'periodic', 'absorbing'],
    moving_window_velocity=moving_window_velocity,
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, method='CKC', cfl=1.)

##########################
# diagnostics
##########################

diag_field_list = ["rho", "E", "B", "J"]
field_diag1 = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=10,
    write_dir='.',
    warpx_file_prefix='Python_LaserAccelerationMR_plt',
    data_list=diag_field_list)

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=10,
                                      species=[electrons])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
Esempio n. 24
0
    warpx_potential_lo_x=V_xmin,
    warpx_potential_hi_x=V_xmax,
    moving_window_velocity=None,
    warpx_max_grid_size=32)

solver = picmi.ElectrostaticSolver(grid=grid,
                                   method='Multigrid',
                                   required_precision=1e-6)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(name='diag1',
                                   grid=grid,
                                   period=4,
                                   data_list=['phi'],
                                   write_dir='.',
                                   warpx_file_prefix='Python_dirichletbc_plt')

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       time_step_size=dt,
                       max_steps=max_steps,
                       particle_shape=None,
                       verbose=0)

sim.add_diagnostic(field_diag)
Esempio n. 25
0
                       verbose=1,
                       warpx_current_deposition_algo='esirkepov')

sim.add_species(beam,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))
sim.add_species(plasma,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=2,
    data_list=['Ex', 'Ey', 'Ez', 'Jx', 'Jy', 'Jz', 'part_per_cell'],
    write_dir='diags',
    warpx_file_prefix='plotfiles/plt')

part_diag = picmi.ParticleDiagnostic(
    name='diag1',
    period=2,
    species=[beam, plasma],
    data_list=['ux', 'uy', 'uz', 'weighting', 'Ex', 'Ey', 'Ez'],
    write_dir='diags')

sim.add_diagnostic(field_diag)
sim.add_diagnostic(part_diag)

# write_inputs will create an inputs file that can be used to run
grid = picmi.Cartesian3DGrid(
    number_of_cells=[nx, ny, nz],
    lower_bound=[xmin, ymin, zmin],
    upper_bound=[xmax, ymax, zmax],
    lower_boundary_conditions=['periodic', 'periodic', 'open'],
    upper_boundary_conditions=['periodic', 'periodic', 'open'],
    moving_window_velocity=moving_window_velocity,
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, method='CKC', cfl=1.)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(name='diag1', grid=grid, period=10)

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=10,
                                      species=[electrons])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       cfl=1.0,
                       warpx_current_deposition_algo='esirkepov')