Esempio n. 1
0
    def test_fit_regression_multiple_datavariables(self):
        time = pd.date_range('2000-01-01', freq='24H', periods=7)
        time2 = pd.date_range('2000-01-08', freq='24H', periods=1)

        bar = xr.DataArray([2, 2, 2, 2, 3, 3, 3],
                           dims=["time"],
                           coords={'time': time})
        foo = xr.DataArray([4, 4, 4, 4, 6, 6, 6],
                           dims=["time"],
                           coords={'time': time})
        target = xr.DataArray([6, 6, 6, 6, 9, 9, 9],
                              dims=["time"],
                              coords={'time': time})

        lin_reg = LinearRegression()
        wrapper = SKLearnWrapper(module=lin_reg)
        self.assertFalse("coef_" in lin_reg.__dir__())

        wrapper.fit(bar=bar, foo=foo, target=target)
        result = wrapper.transform(bar=xr.DataArray([2],
                                                    dims=["time"],
                                                    coords={'time': time2}),
                                   foo=xr.DataArray([4],
                                                    dims=["time"],
                                                    coords={'time': time2}))
        self.assertAlmostEqual(result["target"].values[0, 0], 6.0)
        self.assertEqual(result["target"].shape, (1, 1))
Esempio n. 2
0
    def test_transform_multiple_output(self):
        lin_reg = LinearRegression()
        multi_regressor = MultiOutputRegressor(lin_reg)
        wrapper = SKLearnWrapper(module=multi_regressor)
        time = pd.date_range('2000-01-01', freq='24H', periods=5)
        time2 = pd.date_range('2000-01-08', freq='24H', periods=1)

        bar = xr.DataArray([1, 2, 3, 4, 5],
                           dims=["time"],
                           coords={'time': time})
        foo = xr.DataArray([1], dims=["time"], coords={'time': time2})
        target = xr.DataArray([2, 2, 2, 2, 2],
                              dims=["time"],
                              coords={'time': time})
        target2 = xr.DataArray([3, 3, 3, 3, 3],
                               dims=["time"],
                               coords={'time': time})

        wrapper.fit(bar=bar, target1=target, target2=target2)

        result = wrapper.transform(bar=foo)
        self.assertAlmostEqual(result["target1"].values[0], 2.0)
        self.assertAlmostEqual(result["target2"].values[0], 3.0)
        self.assertEqual(result["target1"].shape, (1, 1))
        self.assertEqual(result["target2"].shape, (1, 1))
Esempio n. 3
0
    def test_fit_TransformerMixin(self):
        scaler = StandardScaler()
        wrapper = SKLearnWrapper(module=scaler)
        self.assertFalse("mean_" in scaler.__dir__())

        wrapper.fit(test=xr.DataArray([1, 2, 3, 4, 5]))

        self.assertTrue("mean_" in scaler.__dir__())
        self.assertIsNotNone(scaler.mean_)
Esempio n. 4
0
    def test_fit_RegressorMixin(self):
        lin_reg = LinearRegression()
        wrapper = SKLearnWrapper(module=lin_reg)
        self.assertFalse("coef_" in lin_reg.__dir__())

        wrapper.fit(test=xr.DataArray([1, 2, 3, 4, 5]),
                    target=xr.DataArray([2, 2, 2, 2, 2]))

        self.assertTrue("coef_" in lin_reg.__dir__())
        self.assertIsNotNone(lin_reg.coef_)
Esempio n. 5
0
    def test_transform_RegressorMixin(self):
        svr = SVR()
        wrapper = SKLearnWrapper(module=svr)
        time = pd.date_range('2000-01-08', freq='24H', periods=1)
        bar = xr.DataArray([1], dims=["time"], coords={'time': time})

        wrapper.fit(test=xr.DataArray([1, 2, 3, 4, 5]),
                    target=xr.DataArray([2, 2, 2, 2, 2]))

        result = wrapper.transform(bar=bar)
        assert result["target"].values[0] == 2.0
        self.assertEqual(result["target"].shape, (1, 1))
Esempio n. 6
0
    def test_fit_ClassifierMixin(self):
        svc = SVC()
        wrapper = SKLearnWrapper(module=svc)
        time = pd.date_range('2000-01-01', freq='24H', periods=5)
        time2 = pd.date_range('2000-01-08', freq='24H', periods=1)
        bar = xr.DataArray([1, 2, 3, 4, 5],
                           dims=["time"],
                           coords={'time': time})
        foo = xr.DataArray([1], dims=["time"], coords={'time': time2})
        target = xr.DataArray([0, 0, 1, 1, 1],
                              dims=["time"],
                              coords={'time': time})

        wrapper.fit(bar=bar, target=target)

        result = wrapper.transform(bar=foo)
        assert result["target"].values[0] == 0
        self.assertEqual(result["target"].shape, (1, 1))
Esempio n. 7
0
    def test_DensityMixin(self):
        gauss_density = GaussianMixture(n_components=2)
        wrapper = SKLearnWrapper(module=gauss_density)

        time = pd.date_range('2000-01-01', freq='24H', periods=10)
        time2 = pd.date_range('2000-01-08', freq='24H', periods=1)

        bar = xr.DataArray([2, 4, 5, 4, 3, 2, 1, 5, 5, 5],
                           dims=["time"],
                           coords={'time': time})
        wrapper.fit(bar=bar)

        bar1 = xr.DataArray([5], dims=["time"], coords={'time': time2})
        bar2 = xr.DataArray([2], dims=["time"], coords={'time': time2})

        result1 = wrapper.transform(bar=bar1)
        result0 = wrapper.transform(bar=bar2)

        assert result1.values[0] != result0.values[0]

        self.assertEqual(result1.shape, (1, ))
        self.assertEqual(result0.shape, (1, ))
Esempio n. 8
0
    def test_fit_ClusterMixin(self):
        kmeans = KMeans(n_clusters=2)
        wrapper = SKLearnWrapper(module=kmeans)
        # self.assertFalse("coef_" in lin_reg.__dir__())

        time = pd.date_range('2000-01-01', freq='24H', periods=10)
        time2 = pd.date_range('2000-01-08', freq='24H', periods=1)

        bar = xr.DataArray([2, 4, 5, 4, 2, 2, 1, 5, 5, 5],
                           dims=["time"],
                           coords={'time': time})
        foo1 = xr.DataArray([5], dims=["time"], coords={'time': time2})
        foo2 = xr.DataArray([2], dims=["time"], coords={'time': time2})

        wrapper.fit(bar=bar)

        result1 = wrapper.transform(foo=foo1)
        result0 = wrapper.transform(foo=foo2)

        # Assert that both tested datapoints are in different clusters
        assert result1.values[0].argmax() != result0.values[0].argmax()

        self.assertEqual(result1.shape, (1, 2))
        self.assertEqual(result0.shape, (1, 2))