Esempio n. 1
0
 def observe_initial(self, data, labels, initial_indices):
     self.all_active = self.all_active.union(initial_indices)
     name = "{}{}{}_{}".format(self.directory, os.path.sep, self.name,
                               self.iteration)
     plot_combined(self.feat_x, self.feat_y, self.domain, None,
                   (data, labels), None, name, initial_indices, set(),
                   self.condition)
Esempio n. 2
0
def test_adaptive_threshold():
    random.seed(888)
    np.random.seed(888)

    domain = Domain.make([], ["x", "y"], [(0, 1), (0, 1)])
    x, y = domain.get_symbols(domain.variables)
    formula = (x <= y) & (x <= 0.5) & (y <= 0.5) & domain.get_bounds()
    thresholds = {"x": 0.1, "y": 0.1}
    data, _ = RejectionEngine(domain, formula, x * x, 100000).get_samples(50)
    k = 4
    nearest_neighbors = []
    for i in range(len(data)):
        nearest_neighbors.append([])
        for j in range(len(data)):
            if i != j:
                distance = 1 if any(data[i, b] != data[j, b] for b, v in enumerate(domain.variables)
                                    if domain.is_bool(v))\
                    else max(abs(data[i, r] - data[j, r]) / (domain.var_domains[v][1] - domain.var_domains[v][0]) for r, v in enumerate(domain.variables) if domain.is_real(v))
                if len(nearest_neighbors[i]) < k:
                    nearest_neighbors[i].append((j, distance))
                else:
                    index_of_furthest = None
                    for fi, f in enumerate(nearest_neighbors[i]):
                        if index_of_furthest is None or f[
                                1] > nearest_neighbors[i][index_of_furthest][1]:
                            index_of_furthest = fi
                    if distance < nearest_neighbors[i][index_of_furthest][1]:
                        nearest_neighbors[i][index_of_furthest] = (j, distance)
    print(nearest_neighbors)
    t = [[
        sum(n[1] for n in nearest_neighbors[i]) / len(nearest_neighbors[i]) *
        (domain.var_domains[v][1] - domain.var_domains[v][0])
        for v in domain.real_vars
    ] for i in range(len(nearest_neighbors))]
    t = np.array(t)
    print(t)
    print(data)
    # data = uniform(domain, 400)
    labels = evaluate(domain, formula, data)
    data = data[labels == 1]
    labels = labels[labels == 1]
    data, labels = OneClassStrategy.add_negatives(domain, data, labels, t,
                                                  1000)

    directory = "test_output{}adaptive{}{}".format(
        os.path.sep, os.path.sep, time.strftime("%Y-%m-%d %Hh%Mm%Ss"))
    os.makedirs(directory)

    name = os.path.join(directory, "combined.png")
    plot.plot_combined("x", "y", domain, formula, (data, labels), None, name,
                       set(), set())
Esempio n. 3
0
 def observe_iteration(self, data, labels, formula, new_active_indices,
                       solving_time, selection_time):
     self.iteration += 1
     learned_labels = evaluate(self.domain, formula, data)
     name = "{}{}{}_{}".format(self.directory, os.path.sep, self.name,
                               self.iteration)
     plot_combined(self.feat_x,
                   self.feat_y,
                   self.domain,
                   formula, (data, labels),
                   learned_labels,
                   name,
                   self.all_active,
                   new_active_indices,
                   condition=self.condition)
     self.all_active = self.all_active.union(new_active_indices)
Esempio n. 4
0
def experiment():
    random.seed(888)
    np.random.seed(888)

    start = time.time()

    domain = Domain.make(["b0", "b1", "b2"], ["x0", "x1"], [(0, 1), (0, 1)])
    # thresholds = {"x": 0.1, "y": 0.1}
    # data, _ = RejectionEngine(domain, formula, x * x, 100000).get_samples(50)
    filename = "/Users/samuelkolb/Downloads/input-ijcai-rh/ijcai-rh_2_3_2_100_50_4_3.problem_0.train_dataset.data"
    data = np.loadtxt(filename, delimiter=",", skiprows=0)
    k = 4
    nearest_neighbors = []

    for i in range(len(data)):
        nearest_neighbors.append([])
        for j in range(len(data)):
            if i != j:
                distance = 1 if any(data[i, b] != data[j, b] for b, v in enumerate(domain.variables)
                                    if domain.is_bool(v))\
                    else max(abs(data[i, r] - data[j, r]) / (domain.var_domains[v][1] - domain.var_domains[v][0]) for r, v in enumerate(domain.variables) if domain.is_real(v))
                if len(nearest_neighbors[i]) < k:
                    nearest_neighbors[i].append((j, distance))
                else:
                    index_of_furthest = None
                    for fi, f in enumerate(nearest_neighbors[i]):
                        if index_of_furthest is None or f[
                                1] > nearest_neighbors[i][index_of_furthest][1]:
                            index_of_furthest = fi
                    if distance < nearest_neighbors[i][index_of_furthest][1]:
                        nearest_neighbors[i][index_of_furthest] = (j, distance)
    print(nearest_neighbors)
    t = [[
        sum(n[1] for n in nearest_neighbors[i]) / len(nearest_neighbors[i]) *
        (domain.var_domains[v][1] - domain.var_domains[v][0])
        if domain.is_real(v) else 0 for v in domain.variables
    ] for i in range(len(nearest_neighbors))]
    t = np.array(t) * 1.5
    print(t)
    # data = uniform(domain, 400)
    labels = np.ones(len(data))
    data, labels = OneClassStrategy.add_negatives(domain, data, labels, t,
                                                  1000)

    directory = "output{}lariat-synthetic{}{}".format(
        os.path.sep, os.path.sep, time.strftime("%Y-%m-%d %Hh%Mm%Ss"))
    os.makedirs(directory)

    name = os.path.join(directory, "combined.png")
    plot.plot_combined("x0", "x1", domain, None, (data, labels), None, name,
                       set(), set())

    def learn_inc(_data, _labels, _i, _k, _h):
        # strategy = OneClassStrategy(RandomViolationsStrategy(10), thresholds)
        strategy = DecisionTreeSelection()
        learner = KCnfSmtLearner(_k, _h, strategy, "mvn")
        initial_indices = LearnOptions.initial_random(20)(list(
            range(len(_data))))
        learner.add_observer(
            PlottingObserver(domain, directory,
                             "run_{}_{}_{}".format(_i, _k,
                                                   _h), domain.real_vars[0],
                             domain.real_vars[1], None, False))
        return learner.learn(domain, _data, _labels, initial_indices)

    (new_data, new_labels,
     learned_formula), k, h = learn_bottom_up(data, labels, learn_inc, 1, 1, 2,
                                              4, None, None)
    duration = time.time() - start
    Formula(domain, learned_formula).to_file(
        os.path.join(directory,
                     "result_{}_{}_{}.json".format(k, h, int(duration))))