Esempio n. 1
0
def plotStatistics(plt, tm):
    """ create plot file from template and start gnuplot
    """
    inFile = HOMEPATH + 'plot' + plt + '.input'
    outFile = TMPPATH + 'plot' + plt + '.plt'

    print_dbg(True, "INFO : plot statistics with " + plt)
    shutil.copyfile(inFile, outFile)

    stdout_ = sys.stdout
    sys.stdout = runGnuPlot(plt, KEEP_TMP)
    sys.stdout = stdout_
    # ----
    # PLI
    #
    if not KEEP_TMP:
        if tm == 't':
            lf = labelfile
        else:
            lf = labelfile_r

        if (os.path.isfile(lf)):
            os.unlink(lf)

    return
Esempio n. 2
0
def read_rx_csv(rxin, fromDay, fromMonth, fromYear, fromHour, toDay, toMonth,
                toYear, do_fill):
    """ read rxdata into pandas dataformat
    """

    print_dbg(True, 'INFO : building DataFrame')

    # sample data
    # 04.05.2019, 0.2, 3.2, 80.4

    # read all csv fields
    data = pd.read_csv(rxin, header=None, converters={4: stripNL})

    # fill future month records with empty data
    # to have a even plotted chart (needs commandline option 'f')
    if do_fill:
        fillMonth = datetime.now().month + 1
        print_dbg(
            True,
            "INFO : fill future months with empty data (%s - 12)" % fillMonth)
        for n in range(fillMonth, 13):
            future_date = '01.' + str(n).zfill(2) + '.' + str(toYear)
            data.loc[-1] = [future_date, 0.0, 0.0, 0.0]  # adding a row
            data.index = data.index + 1  # shifting index
            print_dbg(DEBUG,
                      "DEBUG: added fill data for date %s" % future_date)

    # rename columns
    data.rename(columns={
        0: 'timestamp',
        1: 'rain_dd',
        2: 'rain_mm',
        3: 'rain_yy'
    },
                inplace=True)

    # convert date string field to datetime
    data['timestamp'] = pd.to_datetime(data['timestamp'], format='%d.%m.%Y')

    start_date = "%s-%s-%s" % (fromYear, str(fromMonth).zfill(2),
                               str(fromDay).zfill(2))
    end_date = "%s-%s-%s" % (toYear, str(toMonth).zfill(2),
                             str(toDay).zfill(2))

    # select only the data within the timerange
    print_dbg(
        DEBUG,
        "DEBUG: mask = (data['timestamp'] >= %s) & (data['timestamp'] <= %s)" %
        (start_date, end_date))
    mask = (data['timestamp'] >= start_date) & (data['timestamp'] <= end_date)
    plotdata = data.loc[mask]

    # use first col. as index
    plotdata.set_index('timestamp', inplace=True)

    if not KEEP_TMP:
        if (os.path.isfile(rxin)):
            os.unlink(rxin)

    return plotdata
Esempio n. 3
0
def temp_stats(pdin, key, fromMonth, toMonth, do_fill):
    """ calculate temperature statistics per day and per month
    """
    print_dbg(True, 'INFO : calculating temperature stats')

    # get temperature column
    pd_temp = pdin.iloc[:, [0]]
    FREQ = 'D'
    print_dbg(
        DEBUG,
        "DEBUG: pandas temperature dataframe end: \n%s" % (pd_temp.tail(3)))

    # for calc. of the trope-night shift records between 18:00 - 06:00 to 00:00 - 12:00
    # need this for resampling
    # to have the required timerange within the same day
    # last night was a trope-night if between 06:00pm and 06:00am Tmin >= 20degC
    pdt = pd_temp.tshift(6, freq='H')
    print_dbg(DEBUG,
              "DEBUG: pandas temperature df tshift 6h: \n%s" % (pdt.tail(3)))

    # the temperature we need to check is now between 00:00 and 12:00 noon
    # ignore everything outside, Tmin needs to be >= 20
    pdx = pdt.loc[(pdt.index.hour <= 12)]

    # resample to day and calc some basic stats
    pd_ver = int(re.sub("\.", "", pd.__version__))
    if (pd_ver <= 141):
        # old syntax
        # numpy: 1.6.2
        # pandas: 0.14.1
        t_mean = pd_temp.resample(FREQ, how='mean')
        t_max = pd_temp.resample(FREQ, how='max')
        t_min = pd_temp.resample(FREQ, how='min')
        t_min_n = pdx.resample(FREQ, how='min')

    else:
        # PLI new syntax
        # numpy: 1.12.1
        # pandas: 0.19.2
        t_mean = pd_temp.resample(FREQ).mean()
        t_max = pd_temp.resample(FREQ).max()
        t_min = pd_temp.resample(FREQ).min()
        t_min_n = pdx.resample(FREQ).min()

    # drop last record for trope-night; due to timeshift before
    if len(t_min) < len(t_min_n):
        t_min_n = t_min_n.iloc[:-1]

    # rename columns
    tx_min = t_min.rename(columns={'outside_air_temp': '_01temp_min'})
    tx_max = t_max.rename(columns={'outside_air_temp': '_02temp_max'})
    tx_mean = t_mean.rename(columns={'outside_air_temp': '_03temp_mean'})
    tx_trop = t_min_n.rename(columns={'outside_air_temp': '_09temp_trope'})

    print_dbg(DEBUG,
              "DEBUG: pandas temperature tx_mean: \n%s" % (tx_mean.tail(3)))
    print_dbg(DEBUG,
              "DEBUG: pandas temperature tx_trop: \n%s" % (tx_trop.tail(3)))

    # create new dataframe
    temp_df = pd.concat([tx_min, tx_max, tx_mean, tx_trop], axis=1)

    # help function
    isTrue = lambda x: int(x == True)
    isNeg = lambda x: int(x < 0)

    # replace NaN by '0';
    # needed if you provide the 'f' commandline parameter
    # because future values are generated with NaN
    temp_df.fillna(0, inplace=True)

    # add additional stats rows
    temp_df['_04t_ice'] = np.sign(temp_df._02temp_max)
    temp_df['_05t_frost'] = np.sign(temp_df._01temp_min)

    temp_df['_06t_summer'] = temp_df.apply(
        lambda e: e._02temp_max >= DEG_C['_06t_summer'], axis=1)
    temp_df['_07t_hot'] = temp_df.apply(
        lambda e: e._02temp_max >= DEG_C['_07t_hot'], axis=1)
    temp_df['_08t_desert'] = temp_df.apply(
        lambda e: e._02temp_max >= DEG_C['_08t_desert'], axis=1)
    temp_df['_09t_trope'] = temp_df.apply(
        lambda e: e._09temp_trope >= DEG_C['_09t_trope'], axis=1)

    # recalc values
    temp_df['_04t_ice'] = temp_df.apply(
        lambda temp_df: isNeg(temp_df['_04t_ice']), axis=1)
    temp_df['_05t_frost'] = temp_df.apply(
        lambda temp_df: isNeg(temp_df['_05t_frost']), axis=1)
    temp_df['_06t_summer'] = temp_df.apply(
        lambda temp_df: isTrue(temp_df['_06t_summer']), axis=1)
    temp_df['_07t_hot'] = temp_df.apply(
        lambda temp_df: isTrue(temp_df['_07t_hot']), axis=1)
    temp_df['_08t_desert'] = temp_df.apply(
        lambda temp_df: isTrue(temp_df['_08t_desert']), axis=1)
    temp_df['_09t_trope'] = temp_df.apply(
        lambda temp_df: isTrue(temp_df['_09t_trope']), axis=1)

    # just for statistics
    d_ice = temp_df['_04t_ice'].sum()
    d_frost = temp_df['_05t_frost'].sum()
    d_summer = temp_df['_06t_summer'].sum()
    d_hot = temp_df['_07t_hot'].sum()
    d_desert = temp_df['_08t_desert'].sum()
    d_trope = temp_df['_09t_trope'].sum()

    #---------------------------------------------------------------------
    # show some stats
    if TRACE:
        # overal statistics
        #d_desert = t_max[t_max["outside_air_temp"] >= 35 ].count()['outside_air_temp']
        #d_trope  = temp_df[temp_df["_09t_trope"] > 0 ].count()['_09t_trope']

        # frost day
        print_dbg(True, "INFO : Icedays    : %s" % d_ice)
        print_dbg(True, "INFO : Frostdays  : %s" % d_frost)
        # hot day
        print_dbg(True, "INFO : Summerdays : %s" % d_summer)
        print_dbg(True, "INFO : Hotdays    : %s" % d_hot)
        print_dbg(True, "INFO : Desertdays : %s" % d_desert)
        print_dbg(True, "INFO : Tropenights: %s" % d_trope)

    #---------------------------------------------------------------------

    # create monthly stats
    if (pd_ver <= 141):
        # old syntax
        # numpy: 1.6.2
        # pandas: 0.14.1
        m_df = temp_df.resample('MS',
                                how={
                                    '_01temp_min': 'min',
                                    '_02temp_max': 'max',
                                    '_03temp_mean': 'mean',
                                    '_04t_ice': 'sum',
                                    '_05t_frost': 'sum',
                                    '_06t_summer': 'sum',
                                    '_07t_hot': 'sum',
                                    '_08t_desert': 'sum',
                                    '_09t_trope': 'sum'
                                })

    else:
        # PLI new syntax
        # numpy: 1.12.1
        # pandas: 0.19.2
        m_df = temp_df.resample('MS').agg({
            '_01temp_min': 'min',
            '_02temp_max': 'max',
            '_03temp_mean': 'mean',
            '_04t_ice': 'sum',
            '_05t_frost': 'sum',
            '_06t_summer': 'sum',
            '_07t_hot': 'sum',
            '_08t_desert': 'sum',
            '_09t_trope': 'sum'
        })

    d_min = "%.2f" % m_df._01temp_min.min()
    d_max = "%.2f" % m_df._02temp_max.max()
    d_mean = "%.2f" % m_df._03temp_mean.mean()

    # sort indices
    m_df.sort_index(axis=1, inplace=True)

    # rename sort header to usable names
    m_df.rename(columns=LabelText, inplace=True)

    # write daily and monthly stats to file
    out_m = rebuild_name(statout_m, key)

    # save csv for plotting
    temp_df.to_csv(statout_d)
    m_df.to_csv(out_m)

    if do_fill:
        fillMonth = datetime.now().month
        # now dropping the additional records which we have added before
        for n in range(toMonth, fillMonth, -1):
            print_dbg(DEBUG, 'DEBUG: removing empty month: n %s' % (n))
            m_df = m_df[:-1]

    # add sum to each column
    #df_col = ["timestamp","MinTemperatur","MaxTemperatur","AvgTemperatur",
    #          "Eistage","Frosttage","Sommertage","Hitzetage","Wuestentage","Tropennaechte"]

    df_col = ['timestamp']
    iterlabel = iter(sorted(LabelText))
    next(iterlabel)
    next(iterlabel)
    for n in iterlabel:
        df_col.append(LabelText[n])

    sum_val = [
        key + '-12-31', d_min, d_max, d_mean, d_ice, d_frost, d_summer, d_hot,
        d_desert, d_trope
    ]

    # build new index names
    new_idx_names = []
    old_idx_names = m_df.index
    for n in range(len(m_df.index)):
        mon = old_idx_names[n].month
        new_idx_names.append(months[mon])

    new_idx_names.append(key)

    try:
        sum_df = pd.DataFrame([sum_val], columns=df_col)
        sum_df.set_index('timestamp', inplace=True)

        mx_df = pd.concat([m_df, sum_df])
        mx_df.index = new_idx_names
    except Exception as e:
        print_dbg(True, 'ERROR: exception(s) when creating sum: %s.' % e)

    return mx_df
Esempio n. 4
0
def rain_stats(pdin, key, fromMonth, toMonth, do_fill):
    """ calculate rain statistics per day and per month
        # 05.01.2019, 7.4, 9.4, 9.4
        # 06.01.2019, 0.0, 9.4, 9.4
        # 07.01.2019, 0.0, 9.4, 9.4
        # 08.01.2019, 3.0, 12.4, 12.4
    """
    print_dbg(True, 'INFO : calculating rain stats')

    # get rain columns

    # month and year
    pd_rain = pdin.iloc[:, [1, 2]]

    # rain_dd
    pd_rain_d = pdin.iloc[:, [0]]

    FREQ = 'M'

    # resample to day and calc some basic stats
    pd_ver = int(re.sub("\.", "", pd.__version__))
    if (pd_ver <= 141):
        # old syntax
        # numpy: 1.6.2
        # pandas: 0.14.1
        r_mean = pd_rain.resample(FREQ, how='mean')
        r_max = pd_rain.resample(FREQ, how='max')
        r_max_d = pd_rain_d.resample(FREQ, how='max')
        r_sum_d = pd_rain_d.resample(FREQ, how='sum')

    else:
        # PLI new syntax
        # numpy: 1.12.1
        # pandas: 0.19.2
        r_mean = pd_rain.resample(FREQ).mean()
        r_max = pd_rain.resample(FREQ).max()
        # max mm per day/month
        r_max_d = pd_rain_d.resample(FREQ).max()
        # r_sum_d = r_max = monthly rain
        r_sum_d = pd_rain_d.resample(FREQ).sum()
        r_sum_q = pd_rain_d.resample('Q').sum()
        r_avg_m = pd_rain_d.resample(FREQ).mean()
        #r_avg_m = r_sum_d.resample(FREQ).mean()

    # number of rain days, avg mm/day (if raining)
    r_nr_d = pd_rain_d.mask(pd_rain_d.rain_dd.le(0.2)).groupby(
        pd.Grouper(freq='M')).count()
    r_avg_d = pd_rain_d.mask(pd_rain_d.rain_dd.le(0.2)).groupby(
        pd.Grouper(freq='M')).mean()

    r_avg_m = r_sum_d.rolling(window=2).mean()
    r_avg_m.at[key + '-01-31', 'rain_dd'] = r_sum_d.ix[key + '-01-31',
                                                       'rain_dd']

    for i in range(2, 5):
        r_avg_m['MA{}'.format(i)] = r_sum_d.rolling(window=i).mean()

    rx_nr_d = r_nr_d.rename(columns={'rain_dd': '_01rain_days'})
    rx_d_max = r_max_d.rename(columns={'rain_dd': '_02daily_rain_max'})
    rx_d_avg = r_avg_d.rename(columns={'rain_dd': '_03daily_rain_avg'})

    rx_max = r_max.rename(columns={
        'rain_mm': '_04monthly_rain_max',
        'rain_yy': '_05yearly_rain_max'
    })
    rx_mean = r_mean.rename(columns={
        'rain_mm': '_07monthly_rain_mean',
        'rain_yy': '_06yearly_rain_mean'
    })

    # we don't need _07month...
    rx_mean_y = rx_mean.iloc[:, [1]]

    print_dbg(DEBUG, "DEBUG: pandas rain r_sum_d  : \n%s" % (r_sum_d))
    print_dbg(DEBUG, "DEBUG: pandas rain r_sum_q  : \n%s" % (r_sum_q))
    print_dbg(DEBUG, "DEBUG: pandas rain r_avg_d  : \n%s" % (r_avg_d))
    print_dbg(DEBUG, "DEBUG: pandas rain r_avg_m  : \n%s" % (r_avg_m))

    # create new dataframe
    rain_df = pd.concat([rx_nr_d, rx_d_max, rx_d_avg, rx_max, rx_mean_y],
                        axis=1)
    print_dbg(DEBUG, "DEBUG: pandas rain rain_df: \n%s" % (rain_df))

    # replace NaN by '0';
    # needed if you provide the 'f' commandline parameter
    # because future values are generated with NaN
    rain_df.fillna(0, inplace=True)

    # create monthly stats
    if (pd_ver <= 141):
        # old syntax
        # numpy: 1.6.2
        # pandas: 0.14.1
        m_df = rain_df.resample('MS',
                                how={
                                    '_01rain_days': 'sum',
                                    '_02daily_rain_max': 'max',
                                    '_03daily_rain_avg': 'mean',
                                    '_04monthly_rain_max': 'max',
                                    '_05yearly_rain_max': 'max',
                                    '_06yearly_rain_mean': 'mean'
                                })

    else:
        # PLI new syntax
        # numpy: 1.12.1
        # pandas: 0.19.2
        m_df = rain_df.resample('MS').agg({
            '_01rain_days': 'sum',
            '_02daily_rain_max': 'max',
            '_03daily_rain_avg': 'mean',
            '_04monthly_rain_max': 'max',
            '_05yearly_rain_max': 'max',
            '_06yearly_rain_mean': 'mean'
        })

    m_df['_06yearly_rain_mean'] = m_df._06yearly_rain_mean.apply(lambda x: '-')
    print_dbg(DEBUG, "DEBUG: pandas rain m_df: \n%s" % (m_df))

    dd_sum = "%.2f" % m_df._01rain_days.sum()
    dd_max = "%.2f" % m_df._02daily_rain_max.max()
    dd_mean = "%.2f" % m_df._03daily_rain_avg.mean()

    dm_max = "%.2f" % m_df._04monthly_rain_max.max()

    dy_mean = "%.2f" % m_df._04monthly_rain_max.mean()
    dy_max = "%.2f" % m_df._05yearly_rain_max.max()

    if TRACE:
        print_dbg(True, "INFO : Raindays   : %s" % dd_sum)
        print_dbg(True, "INFO : max Day    : %s" % dd_max)
        print_dbg(True, "INFO : max Month  : %s" % dm_max)
        print_dbg(True, "INFO : mm/Year    : %s" % dy_max)

    # sort indices
    m_df.sort_index(axis=1, inplace=True)

    # rename sort header to usable names
    m_df.rename(columns=LabelTextR, inplace=True)

    # write daily and monthly stats to file
    out_m = rebuild_name(statout_mr, key)

    # save csv for plotting
    rain_df.to_csv(statout_dr)
    m_df.to_csv(out_m)

    if do_fill:
        fillMonth = datetime.now().month
        # now dropping the additional records which we have added before
        for n in range(toMonth, fillMonth, -1):
            print_dbg(DEBUG, 'DEBUG: removing empty month: n %s' % (n))
            m_df = m_df[:-1]

    df_col = ['timestamp']
    iterlabel = iter(sorted(LabelTextR))
    next(iterlabel)
    next(iterlabel)
    for n in iterlabel:
        df_col.append(LabelTextR[n])

    sum_val = [
        key + '-12-31', dd_sum, dd_max, dd_mean, dm_max, dy_max, dy_mean
    ]

    # build new index names
    new_idx_names = []
    old_idx_names = m_df.index
    for n in range(len(m_df.index)):
        mon = old_idx_names[n].month
        new_idx_names.append(months[mon])

    new_idx_names.append(key)

    try:
        sum_df = pd.DataFrame([sum_val], columns=df_col)
        sum_df.set_index('timestamp', inplace=True)

        mx_df = pd.concat([m_df, sum_df])
        mx_df.index = new_idx_names
    except Exception as e:
        print_dbg(True, 'ERROR: exception(s) when creating sum: %s.' % e)

    return mx_df
Esempio n. 5
0
def read_wx_csv(wxin, fromDay, fromMonth, fromYear, fromHour, toDay, toMonth,
                toYear, do_fill):
    """ read wxdata into pandas dataformat
    """

    print_dbg(True, 'INFO : building DataFrame')

    # sample data
    # 01.02.2016 00:05:19,3.9,90,2.2,1012.5,237,1.7,0.0,0,0.0,0.0,0.0,0.0,1.5,1.7,6.1,135

    # read all csv fields
    data = pd.read_csv(wxin, header=None, converters={16: stripNL})

    # fill future month records with empty data
    # to have a even plotted chart (needs commandline option 'f')
    if do_fill:
        fillMonth = datetime.now().month + 1
        print_dbg(
            True,
            "INFO : fill future months with empty data (%s - 12)" % fillMonth)
        for n in range(fillMonth, 13):
            future_date = '01.' + str(n).zfill(2) + '.' + str(toYear)
            data.loc[-1] = [
                future_date + " 00:00:00", 0.0, 90, 0.0, 1000.0, 100, 0.0, 0.0,
                0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0
            ]  # adding a row
            data.index = data.index + 1  # shifting index
            print_dbg(DEBUG,
                      "DEBUG: added fill data for date %s" % future_date)

    # rename columns
    data.rename(columns={
        0: 'timestamp',
        1: 'outside_air_temp',
        2: 'outside_rel_hum',
        3: 'outside_dew_point_temp',
        4: 'barometic_pressure',
        5: 'present_wind_direction',
        6: 'present_wind_speed',
        7: 'UV_index',
        8: 'solar_radiation',
        9: 'rain_rate',
        10: 'daily_rain',
        11: 'daily_ET',
        12: 'monthly_ET',
        13: 'ten_min_avg_wind_speed',
        14: 'two_min_avg_wind_speed',
        15: 'ten_min_wind_gust_speed',
        16: 'ten_min_wind_gust_direction'
    },
                inplace=True)

    # convert date string field to datetime
    data['timestamp'] = pd.to_datetime(data['timestamp'],
                                       format='%d.%m.%Y %H:%M:%S')

    toHour = 23
    start_date = "%s-%s-%s %s:00:00" % (fromYear, str(fromMonth).zfill(2),
                                        str(fromDay).zfill(2),
                                        str(fromHour).zfill(2))
    end_date = "%s-%s-%s %s:59:59" % (toYear, str(toMonth).zfill(2),
                                      str(toDay).zfill(2),
                                      str(toHour).zfill(2))

    # select only the data within the timerange
    print_dbg(
        DEBUG,
        "DEBUG: mask = (data['timestamp'] >= %s) & (data['timestamp'] <= %s)" %
        (start_date, end_date))
    mask = (data['timestamp'] >= start_date) & (data['timestamp'] <= end_date)
    plotdata = data.loc[mask]

    # use first col. as index
    plotdata.set_index('timestamp', inplace=True)

    if not KEEP_TMP:
        if (os.path.isfile(wxin)):
            os.unlink(wxin)

    return plotdata
Esempio n. 6
0
def prepareCSVDataRain(fromMonth, fromYear, tmpfile):
    """ merging rain csv files from YYYMM to current month
        DAY         DD   MM   YY
        04.05.2019, 0.2, 3.2, 80.4
    """

    print_dbg(True, 'INFO : preparing rain CSV file')

    # get date to read the current csv
    YYMM = '%s' % time.strftime('%Y-%m')
    RX = CSVPATH + YYMM + "." + RAINSUFFIX

    # get name for previous csv
    fromYYMM = str(fromYear) + '-' + str(fromMonth).zfill(2)

    # remove existing temp file
    if (os.path.isfile(tmpfile)):
        os.unlink(tmpfile)

    start = date(year=fromYear, month=fromMonth, day=1)
    end = date.today()

    print_dbg(DEBUG, "DEBUG: start: %s" % (start))
    print_dbg(DEBUG, "DEBUG: end  : %s" % (end))

    if (YYMM <> fromYYMM):
        print_dbg(DEBUG,
                  "DEBUG: YYMM (%s) <> fromYYMM (%s)" % (YYMM, fromYYMM))
        # to add dummy data for missing months, now open target file inside the loop

        for dv in jump_by_month(start, end):
            curYYMM = str(dv)[:7]
            RXcur = CSVPATH + curYYMM + "." + RAINSUFFIX
            if (os.path.isfile(RXcur)):
                print_dbg(DEBUG, "DEBUG merging %s" % curYYMM)
                rx = open(tmpfile, 'ab')
                rxc = open(RXcur, 'rb')
                shutil.copyfileobj(rxc, rx)
                rxc.close()
                rx.close()
            else:
                # if year does not start in january (because you started with this project later)
                # it also plots january for the next year, which doesn't look pretty.
                # the reason seems to be the calculation of the trope nights because I shift the night
                # data to the next day.
                # the year is correctly plotted, if I add this monthly dummy line for the year, where you
                # started with wospi.
                # until I have a better solution (clipping the data for the next year after trope night calc,
                # I'll keep this workaround here. It works for my environment, hope, it works for yours aswell.
                # you can test be behaviour if you comment the "rx.write(...)" line below
                print_dbg(True, "WARN : missing data for %s" % curYYMM)
                curYY = str(dv)[:4]
                curMM = str(dv)[6:7].zfill(2)
                print_dbg(
                    True,
                    "WARN : adding dummy line for %s.%s" % (curMM, curYY))
                rx = open(tmpfile, 'ab')
                #         04.05.2019, 0.2, 3.2, 80.4
                rx.write('01.%s.%s,0.0,0.0,0.0\n' % (curMM, curYY))
                rx.close()

    else:
        print_dbg(DEBUG,
                  "DEBUG: YYMM (%s) == fromYYMM (%s)" % (YYMM, fromYYMM))
        print_dbg(True, "INFO : creating tmpcsv from %s" % YYMM)
        shutil.copyfile(RX, tmpfile)

    return
Esempio n. 7
0
        elif o in ("-c", "--current"):
            has_cmdc = True
        elif o in ("-l", "--last"):
            YYYY_DIF = a
            has_cmdl = True
        elif o in ("-i", "--interval"):
            INTERVAL = a
            has_cmdi = True
        elif o in ("-f", "--fill"):
            has_cmdf = True
        else:
            assert False, "unhandled option"

    if has_cmdi:
        if (INTERVAL <> "y") and (INTERVAL <> "m"):
            print_dbg(True, "ERROR: only 'y' or 'm' are allowed")
            usage()

    if (not has_cmdi) and (not has_cmdc) and (not has_cmdl):
        usage()

    if (has_cmdl):
        if (not YYYY_DIF.isdigit()):
            print_dbg(True, "ERROR: only digits are allowed with 'l'")
            usage()

    if has_cmdf:
        if (has_cmdl):
            print_dbg(True, "ERROR: option 'fill' only allowed with 'c'")
            usage()