Esempio n. 1
0
    def from_constraints(self, v1, c1, v2, c2):
        """
        Geneate an orientation object given two constraint vectors

        Args:
            v1: a 1x3 vector in the original reference frame
            c1: a corresponding axis which v1 must be mapped to
            v1: a second 1x3 vector in the original reference frame
            c1: a corresponding axis which v2 must be mapped to

        Returns:
            an orientation object consistent with the supplied constraints
        """
        T = rotate_vector(v1, c1)
        phi = angle(c1, c2)
        phi2 = angle(c1, (np.dot(T, v2)))
        if not np.isclose(phi, phi2, rtol=0.01):
            printx("Error: constraints and vectors do not match.", priority=1)
            return
        r = np.sin(phi)
        c = np.linalg.norm(np.dot(T, v2) - c2)
        theta = np.arccos(1 - (c ** 2) / (2 * (r ** 2)))
        Rot = R.from_rotvec(theta * c1)
        T2 = np.dot(R, T)
        a = angle(np.dot(T2, v2), c2)
        if not np.isclose(a, 0, rtol=0.01):
            T2 = np.dot(np.linalg.inv(R), T)
        a = angle(np.dot(T2, v2), c2)
        if not np.isclose(a, 0, rtol=0.01):
            printx("Error: Generated incorrect rotation: " + str(theta), priority=1)
        return Orientation(T2, degrees=0)
Esempio n. 2
0
    def rotate_by_matrix(self, matrix, ignore_constraint=True):
        """
        rotate

        Args:
            matrix: 3*3 rotation matrix

        """
        if not ignore_constraint:
            if self.degrees == 0:
                raise ValueError("cannot rotate")
            elif self.degrees == 1:
                axis = self.axis
                vec = Rotation.from_matrix(matrix).as_rotvec()
                if angle(vec, self.axis) > 1e-2 and angle(vec, -self.axis) > 1e-2:
                    raise ValueError("must rotate along the given axis")
        else:
            axis = None

        matrix = matrix.dot(self.matrix)
        return Orientation(matrix, self.degrees, axis)
Esempio n. 3
0
def orientation_in_wyckoff_position(
    mol,
    wyckoff_position,
    randomize=True,
    exact_orientation=False,
    already_oriented=False,
    allow_inversion=True,
    rtol=1e-2,
):
    """
    Tests if a molecule meets the symmetry requirements of a Wyckoff position,
    and returns the valid orientations.

    Args:
        mol: a Molecule object. Orientation is arbitrary
        wyckoff_position: a pyxtal.symmetry.Wyckoff_position object
        randomize: whether or not to apply a random rotation consistent with
            the symmetry requirements
        exact_orientation: whether to only check compatibility for the provided
            orientation of the molecule. Used within general case for checking.
            If True, this function only returns True or False
        already_oriented: whether or not to reorient the principle axes
            when calling get_symmetry. Setting to True can remove redundancy,
            but is not necessary
        allow_inversion: whether or not to allow chiral molecules to be
            inverted. Should only be True if the chemical and biological
            properties of the mirror image are known to be suitable for the
            desired application

    Returns:
        a list of operations.Orientation objects which can be applied to the
        molecule while allowing it to satisfy the symmetry requirements of the
        Wyckoff position. If no orientations are found, returns False.
    """
    # For single atoms, there are no constraints
    if len(mol) == 1:
        return [Orientation([[1, 0, 0], [0, 1, 0], [0, 0, 1]], degrees=2)]

    wyckoffs = wyckoff_position.ops
    w_symm = wyckoff_position.symmetry_m

    # Obtain the Wyckoff symmetry
    symm_w = w_symm[0]
    pga = PointGroupAnalyzer(mol)

    # Check exact orientation
    if exact_orientation is True:
        mo = deepcopy(mol)
        valid = True
        for op in symm_w:
            if not pga.is_valid_op(op):
                valid = False
        if valid is True:
            return True
        elif valid is False:
            return False

    # Obtain molecular symmetry, exact_orientation==False
    symm_m = get_symmetry(mol, already_oriented=already_oriented)
    # Store OperationAnalyzer objects for each molecular SymmOp
    chiral = True
    opa_m = []
    for op_m in symm_m:
        opa = OperationAnalyzer(op_m)
        opa_m.append(opa)
        if opa.type == "rotoinversion":
            chiral = False
        elif opa.type == "inversion":
            chiral = False

    # If molecule is chiral and allow_inversion is False,
    # check if WP breaks symmetry
    if chiral is True:
        if allow_inversion is False:
            for op in wyckoffs:
                if np.linalg.det(op.rotation_matrix) < 0:
                    printx(
                        "Warning: cannot place chiral molecule in spagegroup",
                        priority=2,
                    )
                    return False

    # Store OperationAnalyzer objects for each Wyckoff symmetry SymmOp
    opa_w = []
    for op_w in symm_w:
        opa_w.append(OperationAnalyzer(op_w))

    # Check for constraints from the Wyckoff symmetry...
    # If we find ANY two constraints (SymmOps with unique axes), the molecule's
    # point group MUST contain SymmOps which can be aligned to these particular
    # constraints. However, there may be multiple compatible orientations of the
    # molecule consistent with these constraints
    constraint1 = None
    constraint2 = None
    for i, op_w in enumerate(symm_w):
        if opa_w[i].axis is not None:
            constraint1 = opa_w[i]
            for j, op_w in enumerate(symm_w):
                if opa_w[j].axis is not None:
                    dot = np.dot(opa_w[i].axis, opa_w[j].axis)
                    if (not np.isclose(dot, 1, rtol=rtol)) and (not np.isclose(
                            dot, -1, rtol=rtol)):
                        constraint2 = opa_w[j]
                        break
            break
    # Indirectly store the angle between the constraint axes
    if constraint1 is not None and constraint2 is not None:
        dot_w = np.dot(constraint1.axis, constraint2.axis)
    # Generate 1st consistent molecular constraints
    constraints_m = []
    if constraint1 is not None:
        for i, opa1 in enumerate(opa_m):
            if opa1.is_conjugate(constraint1):
                constraints_m.append([opa1, []])
                # Generate 2nd constraint in opposite direction
                extra = deepcopy(opa1)
                extra.axis = [
                    opa1.axis[0] * -1, opa1.axis[1] * -1, opa1.axis[2] * -1
                ]
                constraints_m.append([extra, []])

    # Remove redundancy for the first constraints
    list_i = list(range(len(constraints_m)))
    list_j = list(range(len(constraints_m)))
    copy = deepcopy(constraints_m)
    for i, c1 in enumerate(copy):
        if i in list_i:
            for j, c2 in enumerate(copy):
                if i > j and j in list_j and j in list_i:
                    # Check if axes are colinear
                    if np.isclose(np.dot(c1[0].axis, c2[0].axis), 1,
                                  rtol=rtol):
                        list_i.remove(j)
                        list_j.remove(j)
                    # Check if axes are symmetrically equivalent
                    else:
                        cond1 = False
                        # cond2 = False
                        for opa in opa_m:
                            if opa.type == "rotation":
                                op = opa.op
                                if np.isclose(
                                        np.dot(op.operate(c1[0].axis),
                                               c2[0].axis),
                                        1,
                                        rtol=5 * rtol,
                                ):
                                    cond1 = True
                                    break
                        if cond1 is True:  # or cond2 is True:
                            list_i.remove(j)
                            list_j.remove(j)
    c_m = deepcopy(constraints_m)
    constraints_m = []
    for i in list_i:
        constraints_m.append(c_m[i])

    # Generate 2nd consistent molecular constraints
    valid = list(range(len(constraints_m)))
    if constraint2 is not None:
        for i, c in enumerate(constraints_m):
            opa1 = c[0]
            for j, opa2 in enumerate(opa_m):
                if opa2.is_conjugate(constraint2):
                    dot_m = np.dot(opa1.axis, opa2.axis)
                    # Ensure that the angles are equal
                    if abs(dot_m - dot_w) < 0.02 or abs(dot_m + dot_w) < 0.02:
                        constraints_m[i][1].append(opa2)
                        # Generate 2nd constraint in opposite direction
                        extra = deepcopy(opa2)
                        extra.axis = [
                            opa2.axis[0] * -1,
                            opa2.axis[1] * -1,
                            opa2.axis[2] * -1,
                        ]
                        constraints_m[i][1].append(extra)
            # If no consistent constraints are found, remove first constraint
            if constraints_m[i][1] == []:
                valid.remove(i)
    copy = deepcopy(constraints_m)
    constraints_m = []
    for i in valid:
        constraints_m.append(copy[i])

    # Generate orientations consistent with the possible constraints
    orientations = []
    # Loop over molecular constraint sets
    for c1 in constraints_m:
        v1 = c1[0].axis
        v2 = constraint1.axis
        T = rotate_vector(v1, v2)
        # If there is only one constraint
        if c1[1] == []:
            o = Orientation(T, degrees=1, axis=constraint1.axis)
            orientations.append(o)
        else:
            # Loop over second molecular constraints
            for opa in c1[1]:
                phi = angle(constraint1.axis, constraint2.axis)
                phi2 = angle(constraint1.axis, np.dot(T, opa.axis))
                if np.isclose(phi, phi2, rtol=rtol):
                    r = np.sin(phi)
                    c = np.linalg.norm(np.dot(T, opa.axis) - constraint2.axis)
                    theta = np.arccos(1 - (c**2) / (2 * (r**2)))
                    # R = aa2matrix(constraint1.axis, theta)
                    R = Rotation.from_rotvec(theta *
                                             constraint1.axis).as_matrix()
                    T2 = np.dot(R, T)
                    a = angle(np.dot(T2, opa.axis), constraint2.axis)
                    if not np.isclose(a, 0, rtol=rtol):
                        T2 = np.dot(np.linalg.inv(R), T)
                    o = Orientation(T2, degrees=0)
                    orientations.append(o)

    # Ensure the identity orientation is checked if no constraints are found
    if constraints_m == []:
        o = Orientation(np.identity(3), degrees=2)
        orientations.append(o)

    # Remove redundancy from orientations
    list_i = list(range(len(orientations)))
    list_j = list(range(len(orientations)))
    for i, o1 in enumerate(orientations):
        if i in list_i:
            for j, o2 in enumerate(orientations):
                if i > j and j in list_j and j in list_i:
                    # m1 = o1.get_matrix(angle=0)
                    # m2 = o2.get_matrix(angle=0)
                    m1 = o1.matrix
                    m2 = o2.matrix
                    new_op = SymmOp.from_rotation_and_translation(
                        np.dot(m2, np.linalg.inv(m1)), [0, 0, 0])
                    P = SymmOp.from_rotation_and_translation(
                        np.linalg.inv(m1), [0, 0, 0])
                    old_op = P * new_op * P.inverse
                    if pga.is_valid_op(old_op):
                        list_i.remove(j)
                        list_j.remove(j)
    #copies = deepcopy(orientations)
    orientations_new = []
    for i in list_i:
        orientations_new.append(orientations[i])

    #Check each of the found orientations for consistency with the Wyckoff pos.
    #If consistent, put into an array of valid orientations
    allowed = []
    for o in orientations_new:
        if randomize is True:
            op = o.get_op()
        elif randomize is False:
            op = o.get_op()  #do not change
        mo = deepcopy(mol)
        mo.apply_operation(op)
        if orientation_in_wyckoff_position(mo,
                                           wyckoff_position,
                                           exact_orientation=True,
                                           randomize=False,
                                           allow_inversion=allow_inversion):
            allowed.append(o)
    if allowed == []:
        return False
    else:
        return allowed
Esempio n. 4
0
def test_modules():
    print("====== Testing functionality for pyXtal version 0.1dev ======")

    global failed_package
    failed_package = False  # Record if errors occur at any level

    reset()

    print("Importing sys...")
    try:
        import sys

        print("Success!")
    except Exception as e:
        fail(e)
        sys.exit(0)

    print("Importing numpy...")
    try:
        import numpy as np

        print("Success!")
    except Exception as e:
        fail(e)
        sys.exit(0)

    I = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

    print("Importing pymatgen...")
    try:
        import pymatgen

        print("Success!")
    except Exception as e:
        fail(e)
        sys.exit(0)

    try:
        from pymatgen.core.operations import SymmOp
    except Exception as e:
        fail(e)
        sys.exit(0)

    print("Importing pandas...")
    try:
        import pandas

        print("Success!")
    except Exception as e:
        fail(e)
        sys.exit(0)

    print("Importing spglib...")
    try:
        import spglib

        print("Success!")
    except Exception as e:
        fail(e)
        sys.exit(0)

    print("Importing openbabel...")
    try:
        import ase

        print("Success!")
    except:
        print(
            "Error: could not import openbabel. Try reinstalling the package.")

    print("Importing pyxtal...")
    try:
        import pyxtal

        print("Success!")
    except Exception as e:
        fail(e)
        sys.exit(0)

    print("=== Testing modules ===")

    # =====database.element=====
    print("pyxtal.database.element")
    reset()
    try:
        import pyxtal.database.element
    except Exception as e:
        fail(e)

    print("  class Element")
    try:
        from pyxtal.database.element import Element
    except Exception as e:
        fail(e)
    if passed():
        for i in range(1, 95):
            if passed():
                try:
                    ele = Element(i)
                except:
                    fail("Could not access Element # " + str(i))
                try:
                    y = ele.sf
                    y = ele.z
                    y = ele.short_name
                    y = ele.long_name
                    y = ele.valence
                    y = ele.valence_electrons
                    y = ele.covalent_radius
                    y = ele.vdw_radius
                    y = ele.get_all(0)
                except:
                    fail("Could not access attribute for element # " + str(i))
                try:
                    ele.all_z()
                    ele.all_short_names()
                    ele.all_long_names()
                    ele.all_valences()
                    ele.all_valence_electrons()
                    ele.all_covalent_radii()
                    ele.all_vdw_radii()
                except:
                    fail("Could not access class methods")

    check()

    # =====database.hall=====
    print("pyxtal.database.hall")
    reset()
    try:
        import pyxtal.database.hall
    except Exception as e:
        fail(e)

    print("  hall_from_hm")
    try:
        from pyxtal.database.hall import hall_from_hm
    except Exception as e:
        fail(e)

    if passed():
        for i in range(1, 230):
            if passed():
                try:
                    hall_from_hm(i)
                except:
                    fail("Could not access hm # " + str(i))

    check()

    # =====database.collection=====
    print("pyxtal.database.collection")
    reset()
    try:
        import pyxtal.database.collection
    except Exception as e:
        fail(e)

    print("  Collection")
    try:
        from pyxtal.database.collection import Collection
    except Exception as e:
        fail(e)

    if passed():
        for i in range(1, 230):
            if passed():
                try:
                    molecule_collection = Collection("molecules")
                except:
                    fail("Could not access hm # " + str(i))

    check()

    # =====operations=====
    print("pyxtal.operations")
    reset()
    try:
        import pyxtal.operations
    except Exception as e:
        fail(e)

    print("  random_vector")
    try:
        from pyxtal.operations import random_vector
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in range(10):
                random_vector()
        except Exception as e:
            fail(e)

    check()

    print("  angle")
    try:
        from pyxtal.operations import angle
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in range(10):
                v1 = random_vector()
                v2 = random_vector()
                angle(v1, v2)
        except Exception as e:
            fail(e)

    check()

    print("  random_shear_matrix")
    try:
        from pyxtal.operations import random_shear_matrix
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in range(10):
                random_shear_matrix()
        except Exception as e:
            fail(e)

    check()

    print("  is_orthogonal")
    try:
        from pyxtal.operations import is_orthogonal
    except Exception as e:
        fail(e)

    if passed():
        try:
            a = is_orthogonal([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
            b = is_orthogonal([[0, 0, 1], [1, 0, 0], [1, 0, 0]])
            if a is True and b is False:
                pass
            else:
                fail()
        except Exception as e:
            fail(e)

    check()

    print("  aa2matrix")
    try:
        from pyxtal.operations import aa2matrix
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in range(10):
                aa2matrix(1, 1, random=True)
        except Exception as e:
            fail(e)

    check()

    print("  matrix2aa")
    try:
        from pyxtal.operations import matrix2aa
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in range(10):
                m = aa2matrix(1, 1, random=True)
                aa = matrix2aa(m)
        except Exception as e:
            fail(e)

    check()

    print("  rotate_vector")
    try:
        from pyxtal.operations import rotate_vector
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in range(10):
                v1 = random_vector()
                v2 = random_vector()
                rotate_vector(v1, v2)
        except Exception as e:
            fail(e)

    check()

    print("  are_equal")
    try:
        from pyxtal.operations import are_equal
    except Exception as e:
        fail(e)

    if passed():
        try:
            op1 = SymmOp.from_xyz_string("x,y,z")
            op2 = SymmOp.from_xyz_string("x,y,z+1")
            a = are_equal(op1, op2, PBC=[0, 0, 1])
            b = are_equal(op1, op2, PBC=[1, 0, 0])
            if a is True and b is False:
                pass
            else:
                fail()
        except Exception as e:
            fail(e)

    check()

    print("  class OperationAnalyzer")
    try:
        from pyxtal.operations import OperationAnalyzer
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in range(10):
                m = aa2matrix(1, 1, random=True)
                t = random_vector()
                op1 = SymmOp.from_rotation_and_translation(m, t)
                OperationAnalyzer(op1)
        except Exception as e:
            fail(e)

    check()

    print("  class Orientation")
    try:
        from pyxtal.operations import Orientation
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in range(10):
                v1 = random_vector()
                c1 = random_vector()
                o = Orientation.from_constraint(v1, c1)
        except Exception as e:
            fail(e)

    check()

    # =====symmetry=====
    print("pyxtal.symmetry")
    reset()
    try:
        import pyxtal.symmetry
    except Exception as e:
        fail(e)

    print("  get_wyckoffs (may take a moment)")
    try:
        from pyxtal.symmetry import get_wyckoffs
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in [1, 2, 229, 230]:
                get_wyckoffs(i)
                get_wyckoffs(i, organized=True)
        except:
            fail(" Could not access Wyckoff positions for space group # " +
                 str(i))

    check()

    print("  get_wyckoff_symmetry (may take a moment)")
    try:
        from pyxtal.symmetry import get_wyckoff_symmetry
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in [1, 2, 229, 230]:
                get_wyckoff_symmetry(i)
                get_wyckoff_symmetry(i, molecular=True)
        except:
            fail("Could not access Wyckoff symmetry for space group # " +
                 str(i))

    check()

    print("  get_wyckoffs_generators (may take a moment)")
    try:
        from pyxtal.symmetry import get_wyckoff_generators
    except Exception as e:
        fail(e)

    if passed():
        try:
            for i in [1, 2, 229, 230]:
                get_wyckoff_generators(i)
        except:
            fail("Could not access Wyckoff generators for space group # " +
                 str(i))

    check()

    print("  letter_from_index")
    try:
        from pyxtal.symmetry import letter_from_index
    except Exception as e:
        fail(e)

    if passed():
        try:
            if letter_from_index(0, get_wyckoffs(47)) == "A":
                pass
            else:
                fail()
        except Exception as e:
            fail(e)

    check()

    print("  index_from_letter")
    try:
        from pyxtal.symmetry import index_from_letter
    except Exception as e:
        fail(e)

    if passed():
        try:
            if index_from_letter("A", get_wyckoffs(47)) == 0:
                pass
            else:
                fail()
        except Exception as e:
            fail(e)

    check()

    print("  jk_from_i")
    try:
        from pyxtal.symmetry import jk_from_i
    except Exception as e:
        fail(e)

    if passed():
        try:
            w = get_wyckoffs(2, organized=True)
            j, k = jk_from_i(1, w)
            if j == 1 and k == 0:
                pass
            else:
                print(j, k)
                fail()
        except Exception as e:
            fail(e)

    check()

    print("  i_from_jk")
    try:
        from pyxtal.symmetry import i_from_jk
    except Exception as e:
        fail(e)

    if passed():
        try:
            w = get_wyckoffs(2, organized=True)
            j, k = jk_from_i(1, w)
            i = i_from_jk(j, k, w)
            if i == 1:
                pass
            else:
                print(j, k)
                fail()
        except Exception as e:
            fail(e)

    check()

    print("  ss_string_from_ops")
    try:
        from pyxtal.symmetry import ss_string_from_ops
    except Exception as e:
        fail(e)

    if passed():
        try:
            strings = ["1", "4 . .", "2 3 ."]
            for i, sg in enumerate([1, 75, 195]):
                ops = get_wyckoffs(sg)[0]
                ss_string_from_ops(ops, sg, dim=3)
        except Exception as e:
            fail(e)

    check()

    print("  Wyckoff_position")
    try:
        from pyxtal.symmetry import Wyckoff_position
    except Exception as e:
        fail(e)

    if passed():
        try:
            wp = Wyckoff_position.from_group_and_index(20, 1)
        except Exception as e:
            fail(e)

    check()

    print("  Group")
    try:
        from pyxtal.symmetry import Group
    except Exception as e:
        fail(e)

    if passed():
        try:
            g3 = Group(230)
            g2 = Group(80, dim=2)
            g1 = Group(75, dim=1)
        except Exception as e:
            fail(e)

    check()

    # =====crystal=====
    print("pyxtal.crystal")
    reset()
    try:
        import pyxtal.crystal
    except Exception as e:
        fail(e)

    print("  random_crystal")
    try:
        from pyxtal.crystal import random_crystal
    except Exception as e:
        fail(e)

    if passed():
        try:
            c = random_crystal(1, ["H"], [1], 10.0)
            if c.valid is True:
                pass
            else:
                fail()
        except Exception as e:
            fail(e)

    check()

    print("  random_crystal_2D")
    try:
        from pyxtal.crystal import random_crystal_2D
    except Exception as e:
        fail(e)

    if passed():
        try:
            c = random_crystal_2D(1, ["H"], [1], 10.0)
            if c.valid is True:
                pass
            else:
                fail()
        except Exception as e:
            fail(e)

    check()

    # =====molecule=====
    print("pyxtal.molecule")
    reset()
    try:
        import pyxtal.molecule
    except Exception as e:
        fail(e)

    check()

    print("  Collections")
    try:
        from pyxtal.molecule import mol_from_collection
    except Exception as e:
        fail(e)

    if passed():
        try:
            h2o = mol_from_collection("H2O")
            ch4 = mol_from_collection("CH4")
        except Exception as e:
            fail(e)

    print("  get_inertia_tensor")
    try:
        from pyxtal.molecule import get_inertia_tensor
    except Exception as e:
        fail(e)

    if passed():
        try:
            get_inertia_tensor(h2o)
            get_inertia_tensor(ch4)
        except Exception as e:
            fail(e)

    check()

    print("  get_moment_of_inertia")
    try:
        from pyxtal.molecule import get_moment_of_inertia
    except Exception as e:
        fail(e)

    if passed():
        try:
            v = random_vector()
            get_moment_of_inertia(h2o, v)
            get_moment_of_inertia(ch4, v)
        except Exception as e:
            fail(e)

    check()

    print("  reoriented_molecule")
    try:
        from pyxtal.molecule import reoriented_molecule
    except Exception as e:
        fail(e)

    if passed():
        try:
            reoriented_molecule(h2o)
            reoriented_molecule(ch4)
        except Exception as e:
            fail(e)

    check()

    print("  orientation_in_wyckoff_position")
    try:
        from pyxtal.molecule import orientation_in_wyckoff_position
    except Exception as e:
        fail(e)

    if passed():
        try:
            w = get_wyckoffs(20)
            ws = get_wyckoff_symmetry(20, molecular=True)
            wp = Wyckoff_position.from_group_and_index(20, 1)
            orientation_in_wyckoff_position(h2o, wp)
            orientation_in_wyckoff_position(ch4, wp)
        except Exception as e:
            fail(e)

    check()

    # =====molecular_crystal=====
    print("pyxtal.molecular_crystal")
    reset()
    try:
        import pyxtal.crystal
    except Exception as e:
        fail(e)

    print("  molecular_crystal")
    try:
        from pyxtal.molecular_crystal import molecular_crystal
    except Exception as e:
        fail(e)

    if passed():
        try:
            c = molecular_crystal(1, ["H2O"], [1], 10.0)
            if c.valid is True:
                pass
            else:
                fail()
        except Exception as e:
            fail(e)

    check()

    print("  molecular_crystal_2D")
    try:
        from pyxtal.molecular_crystal import molecular_crystal_2D
    except Exception as e:
        fail(e)

    if passed():
        try:
            c = molecular_crystal_2D(1, ["H2O"], [1], 10.0)
            if c.valid is True:
                pass
            else:
                fail()
        except Exception as e:
            fail(e)

    check()

    end(condition=2)