def build_Classifier_Train_Test(self, feature_extractor): self.q21 = q2_1() classifier = self.q21.evaluate_features(feature_extractor, 2) train = self.q21.maintrain test = self.q21.maintest testClaassify = self.q21.testClassify return classifier, train, test, testClaassify
def build_Classifier_Train_Test(self, feature_extractor): self.q21 = q2_1() classifier = self.q21.evaluate_features(feature_extractor, 2) train = self.q21.maintrain test = self.q21.maintest testClaassify = self.q21.testClassify return classifier,train,test, testClaassify
def main(): q21 = q2_1() x = [] y = [] pos = ['N', 'VG', 'ADJ', 'ADV'] print pos extractor = make_pos_extractor(pos) classifier = q21.evaluate_features(extractor, 10) x.append(1) acc = accuracy(q21.maintest, q21.testClassify) y.append(acc) pos = ['N', 'V', 'VG', 'VN', 'VN', 'ADJ', 'ADV'] print pos extractor = make_pos_extractor(pos) classifier = q21.evaluate_features(extractor, 10) x.append(2) acc = accuracy(q21.maintest, q21.testClassify) y.append(acc) pos = ['V', 'ADJ', 'ADV'] print pos extractor = make_pos_extractor(pos) classifier = q21.evaluate_features(extractor, 10) x.append(3) acc = accuracy(q21.maintest, q21.testClassify) y.append(acc) pos = ['ADJ', 'ADV'] print pos extractor = make_pos_extractor(pos) classifier = q21.evaluate_features(extractor, 10) x.append(4) acc = accuracy(q21.maintest, q21.testClassify) y.append(acc) pos = ['N', 'ADJ', 'ADV'] print pos extractor = make_pos_extractor(pos) classifier = q21.evaluate_features(extractor, 10) x.append(5) acc = accuracy(q21.maintest, q21.testClassify) y.append(acc) pylab.bar(x, y, width=0.02, facecolor='blue', align='center') pylab.xlabel('POS') pylab.ylabel("Accuracy") pylab.title("Accuracy for each pos set") pylab.grid(False) pylab.show() return
def main(): q21 = q2_1() print "bag of words extractor:" firstClassifier = q21.evaluate_features(bag_of_words, 10) oldClassify = q21.testClassify print "top k frequent words without stop words extractor:" extractor = make_topK_non_stopword_extractor(10000, stopset) secondClassifier = q21.evaluate_features(extractor, 10) newClassify = q21.testClassify #identifying documents that classified differently and report new positive, new negative noPos, noNeg = newTaggs(oldClassify, newClassify) print "No of documents that the classifier classify them as pos in bag of words extractor and neg in top k extractor is:", noNeg print "No of documents that the classifier classify them as neg in bag of words extractor and pos in top k extractor is:", noPos #drawing plot of accuract vs. K/W plotGraph(q21, 5000) return
def main(): q21 = q2_1() print "bigram Extractor:" #evaluate bigram extractor extractor = make_bigram_extractor() classifier = q21.evaluate_features(extractor, 4) print "bag of words extractor:" #evaluate bag of words extractor extractor = bag_of_words classifier = q21.evaluate_features(extractor, 4) print "all bigram unigram extractor" #evaluate all bigrams and all unigrams extractor extractor = make_bigram_unigram_extractor() classifier = q21.evaluate_features(extractor, 4) print "good bigram unigram extractor:" #evaluate good bigrams and all unigrams extractor extractor = make_good_bigram_unigram_extractor(100) classifier = q21.evaluate_features(extractor, 4) return