Esempio n. 1
0
 def test_fasttree_underscore_ids(self):
     input_fp = self.get_data_path('aligned-dna-sequences-2.fasta')
     input_sequences = AlignedDNAFASTAFormat(input_fp, mode='r')
     with redirected_stdio(stderr=os.devnull):
         obs = fasttree(input_sequences)
     # load the resulting tree and test that it has the right number of
     # tips and the right tip ids (the branch lengths can vary with
     # different versions of FastTree)
     obs_tree = skbio.TreeNode.read(str(obs))
     tips = list(obs_tree.tips())
     tip_names = [t.name for t in tips]
     tip_names.sort()
     self.assertEqual(tip_names, ['_s_e_q_1_', '_s_e_q_2_'])
Esempio n. 2
0
 def test_fasttree_underscore_ids(self):
     input_fp = self.get_data_path('aligned-dna-sequences-2.fasta')
     input_sequences = AlignedDNAFASTAFormat(input_fp, mode='r')
     with redirected_stdio(stderr=os.devnull):
         obs = fasttree(input_sequences)
     # load the resulting tree and test that it has the right number of
     # tips and the right tip ids (the branch lengths can vary with
     # different versions of FastTree)
     obs_tree = skbio.TreeNode.read(str(obs))
     tips = list(obs_tree.tips())
     tip_names = [t.name for t in tips]
     tip_names.sort()
     self.assertEqual(tip_names, ['_s_e_q_1_', '_s_e_q_2_'])
Esempio n. 3
0
 def test_fasttree_n_threads(self):
     input_fp = self.get_data_path('aligned-dna-sequences-1.fasta')
     input_sequences = AlignedDNAFASTAFormat(input_fp, mode='r')
     with redirected_stdio(stderr=os.devnull):
         obs = fasttree(input_sequences, n_threads='auto')
     # load the resulting tree and test that it has the right number of
     # tips and the right tip ids (the branch lengths can vary with
     # different versions of FastTree, and threading can produce
     # non-deterministic trees)
     obs_tree = skbio.TreeNode.read(str(obs))
     tips = list(obs_tree.tips())
     tip_names = [t.name for t in tips]
     tip_names.sort()
     self.assertEqual(tip_names, ['seq1', 'seq2'])
Esempio n. 4
0
 def test_fasttree_n_threads(self):
     input_fp = self.get_data_path('aligned-dna-sequences-1.fasta')
     input_sequences = AlignedDNAFASTAFormat(input_fp, mode='r')
     with redirected_stdio(stderr=os.devnull):
         obs = fasttree(input_sequences, n_threads=-1)
     # load the resulting tree and test that it has the right number of
     # tips and the right tip ids (the branch lengths can vary with
     # different versions of FastTree, and threading can produce
     # non-deterministic trees)
     obs_tree = skbio.TreeNode.read(str(obs))
     tips = list(obs_tree.tips())
     tip_names = [t.name for t in tips]
     tip_names.sort()
     self.assertEqual(tip_names, ['seq1', 'seq2'])
Esempio n. 5
0
 def test_fasttree(self):
     input_fp = self.get_data_path('aligned-dna-sequences-1.fasta')
     input_sequences = AlignedDNAFASTAFormat(input_fp, mode='r')
     with redirected_stdio(stderr=os.devnull):
         obs = fasttree(input_sequences)
     # load the resulting tree and test that it has the right number of
     # tips and the right tip ids (the branch lengths can vary with
     # different versions of FastTree)
     obs_tree = skbio.io.read(obs.open(),
                              format='newick',
                              into=skbio.TreeNode)
     tips = list(obs_tree.tips())
     self.assertEqual(len(tips), 2)
     tip_names = [t.name for t in tips]
     tip_names.sort()
     self.assertEqual(tip_names, ['seq1', 'seq2'])
Esempio n. 6
0
def test_fasttree_num_threads(capfd):
    # Rather than providing an actual filepath, we just run a 'help' command
    # Ideally, we supply --help in this param, but not available in FastTree
    # So we are using -expert instead, so that FastTree doesn't fail
    # ######################
    # Output preview/example:
    # ######################
    # Detailed usage for FastTree 2.1.10 Double precision (No SSE3):
    # FastTree [-nt] [-n 100] [-quote] [-pseudo | -pseudo 1.0]
    #            [-boot 1000 | -nosupport]
    #            [-intree starting_trees_file | -intree1 starting_tree_file]
    #            [-quiet | -nopr]
    #            [-nni 10] [-spr 2] [-noml | -mllen | -mlnni 10]
    #            [-mlacc 2] [-cat 20 | -nocat] [-gamma]
    #            [-slow | -fastest] [-2nd | -no2nd] [-slownni] [-seed 1253]
    #            [-top | -notop] [-topm 1.0 [-close 0.75] [-refresh 0.8]]
    #            [-matrix Matrix | -nomatrix] [-nj | -bionj]
    #            [-lg] [-wag] [-nt] [-gtr] [-gtrrates ac ag at cg ct gt]
    #            [-gtrfreq A C G T]
    #            [ -constraints constraintAlignment
    #            [ -constraintWeight 100.0 ] ]
    #            [-log logfile]
    #          [ alignment_file ]
    #         [ -out output_newick_file | > newick_tree]
    fasttree('-expert', n_threads=1)
    captured = capfd.readouterr()
    assert 'OpenMP' not in captured.err

    fasttree('-expert', n_threads=20)
    captured = capfd.readouterr()
    assert 'OpenMP (20 threads)' in captured.err

    # This test case ensures that when a user enters 'auto', the n_threads
    # var will still be set to the max available on their machine, even if
    # the OMP_NUM_THREADS env var has been set on their machine
    os.environ['OMP_NUM_THREADS'] = '2560'
    fasttree('-expert', n_threads='auto')
    captured = capfd.readouterr()
    assert 'OpenMP (2560 threads)' not in captured.err