Esempio n. 1
0
    def test_04_perfect_overlap_5mm_margin(self):
        _, tumor_np = niftireader.load_image(
            _get_file_name('T01', '04_perfect_overlap_5mm_margin', 'Tumor'))
        _, ablation_np = niftireader.load_image(
            _get_file_name('T01', '04_perfect_overlap_5mm_margin', 'Ablation'))
        distances = margin.compute_distances(tumor_np, ablation_np, None, 1)
        df = margin.summarize_surface_dists('T01', 'L01', distances)
        print(df)

        record = df.loc[(df['Patient'] == "T01")
                        & (df['Lesion'] == 'L01')].iloc[0]
        self.assertEqual(record["nr_voxels"], 222.0)
        self.assertAlmostEqual(record["min_distance"], 4.12, delta=0.01)
        self.assertAlmostEqual(record["max_distance"], 5.0, delta=0.01)
Esempio n. 2
0
    def test_03_n5mm_margin_subcapsular(self):
        _, tumor_np = niftireader.load_image(
            _get_file_name('T02', '03_-5mm_margin_subcapsular', 'Tumor'))
        _, ablation_np = niftireader.load_image(
            _get_file_name('T02', '03_-5mm_margin_subcapsular', 'Ablation'))
        _, liver_np = niftireader.load_image(
            _get_file_name('T02', '03_-5mm_margin_subcapsular', 'Liver'))

        distances = margin.compute_distances(tumor_np, ablation_np, liver_np,
                                             1)
        df = margin.summarize_surface_dists('T02', 'L03', distances)
        print(df)

        record = df.loc[(df['Patient'] == "T02")
                        & (df['Lesion'] == 'L03')].iloc[0]
        self.assertEqual(record["nr_voxels"], 317.0)
        self.assertAlmostEqual(record["min_distance"], -5.09, delta=0.01)
        self.assertAlmostEqual(record["max_distance"], -2.23, delta=0.01)
Esempio n. 3
0
    if liver_file is not None:
        # load the image file
        liver, liver_np = load_image(liver_file)
        # check whether there is a liver segmentation or not.
        has_liver_segmented = np.sum(liver_np.astype(np.uint8)) > 0
    else:
        has_liver_segmented = False

    # extract the spacing from the ablation file
    pixdim = ablation.header['pixdim']
    spacing = (pixdim[1], pixdim[2], pixdim[3])
    # compute the surface distances based on tumor and ablation segmentations
    surface_distance = compute_distances(
        mask_gt=tumor_np,
        mask_pred=ablation_np,
        exclusion_zone=liver_np if has_liver_segmented else None,
        spacing_mm=spacing,
        connectivity=1,
        crop=False)
    # call the surface distance extraction function
    if surface_distance['distances_gt_to_pred'].size > 0:
        # if surface distances returned are not empty
        non_ablated, insufficiently_ablated, completely_ablated = \
            pm.plot_histogram_surface_distances(pat_name=patient_id, lesion_id=lesion_id,
                                                output_file=output_file_histogram,
                                                distance_map=surface_distance['distances_gt_to_pred'],
                                                title='Quantitative Ablation Margin',
                                                print_case_details=True)
        df = pd.DataFrame(
            data={
                'Patient': [patient_id] *