Esempio n. 1
0
def d0_gate(nqbits):
    """
    Circuit generator for create an Abstract Gate that implements a
    Reflexion around the state perpendicular to |0>_{n}.
    Implements operator:
        I-2|0>_{n}{n}<0| = X^{n}c^{n-1}ZX^{n}
    Parameters
    ----------
    nqbits : int
        Number of Qbits of the Abstract Gate
    Returns
    ----------
    q_rout : QLM Routine
        Quantum routine wiht the circuit implementation for operator:
            I-2|0>_{n}{n}<0|
    """
    q_rout = QRoutine()
    qbits = q_rout.new_wires(nqbits)
    for i in range(nqbits):
        q_rout.apply(X, qbits[i])
    #Controlled Z gate by n-1 first qbits
    c_n_z = Z.ctrl(nqbits-1)
    q_rout.apply(c_n_z, qbits[:-1], qbits[-1])
    for i in range(nqbits):
        q_rout.apply(X, qbits[i])
    return q_rout
Esempio n. 2
0
 def q_n_gate():
     """
     Function generator for creating an AbstractGate for apply
     an input gate n times
     Returns
     ----------
     q_rout : quantum routine
         Routine for applying n times an input gate
     """
     q_rout = QRoutine()
     q_bits = q_rout.new_wires(qlm_gate.arity)
     for _ in range(n):
         q_rout.apply(qlm_gate, q_bits)
     return q_rout
Esempio n. 3
0
 def generate(self, **kwargs) -> QRoutine:
     s = kwargs["s"]
     qrout = QRoutine()
     qreg = qrout.new_wires(self.nqubits)
     for i, c in enumerate(s):
         if c == "0":
             qrout.apply(X, qreg[i])
         elif c != "1":
             raise Exception("only 1 or 0 admissible, found " % c)
     qrout.apply(Z.ctrl(self.nqubits - 1), qreg[:-1], qreg[-1])
     for i, c in enumerate(s):
         if c == "0":
             qrout.apply(X, qreg[i])
     return qrout
Esempio n. 4
0
def uphi0_gate(nqbits):
    """
    Circuit generator for creating gate U_Phi_0 for Phase
    Amplification Algorithm. For a n+1 qbit system where the quantum
    state can be decomposed by:
        |Psi>_{n+1} =a*|Phi_{n}>|1>+b|Phi_{n}>|0>.
    The function implements a reflexion around the state |Phi_{n}>|1>.
    The operator implemented is:
        I-2|Phi_{n}>|0><0|<Phi_{n}|
    Parameters
    ----------

    nqbits : int
        Number of Qbits of the Abstract Gate

    Returns
    ----------

    q_rout : QLM Routine
        Quantum routine wiht the circuit implementation for operator:
            I-2|Phi_{n}>|0><0|<Phi_{n}|
    """
    q_rout = QRoutine()
    qbits = q_rout.new_wires(nqbits)
    q_rout.apply(X, qbits[-1])
    q_rout.apply(Z, qbits[-1])
    q_rout.apply(X, qbits[-1])
    return q_rout
Esempio n. 5
0
def _gen_ms(theta, nb_qubits):
    """
    Returns the corresponding MS gate.

    Args:
        theta:
        nb_qubits: Number of qubits affected by the gate

    Returns:
        QRoutine object representing the MS gate.
    """
    routine = QRoutine()

    for first_qb in range(nb_qubits):
        for second_qb in range(first_qb + 1, nb_qubits):
            routine.apply(RXX(theta), [first_qb, second_qb])

    return routine
Esempio n. 6
0
 def u_phi_gate():
     """
     Circuit generator for the u_phi_gate.
     Operation to be implemented: R*P*D_0*P^{+}R^{+}
     Returns
     ----------
     q_rout : Quantum Routinequantum
         Quantum Routine with the circuit implementation for operator:
         R*P*D_0*P^{+}R^{+}
     """
     q_rout = QRoutine()
     qbits = q_rout.new_wires(nqbits)
     q_rout.apply(gate.dag(), qbits)
     d_0 = d0_gate(nqbits)
     q_rout.apply(d_0, qbits)
     q_rout.apply(gate, qbits)
     return q_rout
Esempio n. 7
0
def RZZ(gamma):
    op = QRoutine()
    op.apply(CNOT, [0, 1])
    op.apply(RZ(gamma), 1)
    op.apply(CNOT, [0, 1])

    return op
Esempio n. 8
0
 def generate(self, **kwargs):
     s = kwargs["s"]
     qrout = QRoutine()
     qreg = qrout.new_wires(self.nqubits)
     qout = qrout.new_wires(1)
     for i, c in enumerate(s):
         if c == "1":
             qrout.apply(CNOT, qreg[i], qout)
         elif c != "0":
             raise Exception("only 1 or 0 admissible")
     return qrout
Esempio n. 9
0
 def q_gate():
     """
     Function generator for creating an AbstractGate for implementation
     of the Amplification Amplitude Algorithm (Q)
     Returns
     ----------
     q_rout : quantum routine
         Routine for Amplitude Amplification Algorithm
     """
     q_rout = QRoutine()
     qbits = q_rout.new_wires(nqbits)
     q_rout.apply(uphi0_gate(nqbits), qbits)
     u_phi_gate = load_uphi_gate(pr_gate)
     q_rout.apply(u_phi_gate, qbits)
     return q_rout
Esempio n. 10
0
 def u_C(gamma):
     op = QRoutine()
     for qbits in itertools.combinations(range(graph.V), 2):
         op.apply(RZZ(gamma * graph.E[qbits]), qbits)
     return op
Esempio n. 11
0
 def u_B(beta):
     op = QRoutine()
     for qbit in range(graph.V):
         op.apply(RX(-beta * 2), qbit)
     return op
Esempio n. 12
0
    def test1_abstract_gate(self):
        """
        Tests an AbstractGate translation to Qiskit.
        Only abstract gates defined via a circuit are supported.
        """
        prog = Program()
        qreg = prog.qalloc(3)
        routine = QRoutine()

        for gate_op in PYGATES_1QB:
            routine.apply(gate_op, [0])

        for gate_op in PYGATES_2QB:
            routine.apply(gate_op, [0, 1])

        routine.apply(CCNOT, [0, 1, 2])
        routine.apply(SWAP.ctrl(), [0, 1, 2])

        prog.apply(routine.box("custom_gate"), qreg)
        qlm_circuit = prog.to_circ()
        result = qlm_to_qiskit(qlm_circuit)

        qiskit_qreg = QuantumRegister(3)
        qiskit_creg = ClassicalRegister(3)
        expected = QuantumCircuit(qiskit_qreg, qiskit_creg)
        for gate_op in qiskit_1qb(expected):
            gate_op(qiskit_qreg[0])
        for gate_op in qiskit_1qb_1prm(expected):
            gate_op(3.14, qiskit_qreg[0])
        for gate_op in qiskit_1qb_2prm(expected):
            gate_op(3.14, 3.14, qiskit_qreg[0])
        for gate_op in qiskit_1qb_3prm(expected):
            gate_op(3.14, 3.14, 3.14, qiskit_qreg[0])
        for gate_op in qiskit_2qb(expected):
            gate_op(qiskit_qreg[0], qiskit_qreg[1])
        for gate_op in qiskit_2qb_1prm(expected):
            gate_op(3.14, qiskit_qreg[0], qiskit_qreg[1])

        expected.ccx(*qiskit_qreg)
        expected.cswap(*qiskit_qreg)

        expected.measure(qiskit_qreg, qiskit_creg)

        LOGGER.debug("qlm_to_qiskit test with a QRoutine:")
        expected_str = print_qiskit(expected)
        result_str = print_qiskit(result)
        self.assertEqual(len(result_str), len(expected_str))

        for i in range(len(result.data)):
            r_name, r_params = extract_qiskit(result.data[i])[0:2]
            e_name, e_params = extract_qiskit(expected.data[i])[0:2]
            self.assertEqual(r_name, e_name)
            self.assertEqual(r_params, e_params)
Esempio n. 13
0
def standard_toffoli(n):
    rout = QRoutine()
    wires = rout.new_wires(n)
    rout.apply(X.ctrl(n - 1), wires)
    return rout
Esempio n. 14
0
def dac_toffoli(n):
    rout = QRoutine()
    controls = rout.new_wires(n - 1)
    target = rout.new_wires(1)
    if n == 3:
        rout.apply(X.ctrl(2), controls, target)
        return rout
    first_half = (n - 1) // 2 + ((n - 1) % 2)
    second_half = (n - 1) // 2
    with rout.compute():
        first_toffoli = dac_toffoli(first_half + 1)
        first_anc = rout.new_wires(1)
        rout.apply(first_toffoli, controls[0:first_half], first_anc)
        rout.set_ancillae(first_anc)
        if second_half > 1:
            second_toffoli = dac_toffoli(second_half + 1)
            second_anc = rout.new_wires(1)
            rout.apply(second_toffoli, controls[first_half:], second_anc)
            rout.set_ancillae(second_anc)
        else:
            second_anc = controls[-1]
    rout.apply(X.ctrl(2), first_anc, second_anc, target)
    rout.uncompute()
    return rout