Esempio n. 1
0
    def tfidf(self, path="./bench/"): # This function is used for comparision with qbe
        vectorizer = TfidfVectorizer(stop_words='english')
        lst_files = []
        doc_dict = {}
        inv_doc_dict = {}
        i = 0
        for f in os.listdir(path):
            if f.endswith(".txt"):
                d = open(path+f)
                cont = d.read()
                cont = unicode(cont, errors='ignore')
                lst_files.append(cont)
                doc_dict[f[:-4]] = i #[:-4] is used for trimming '.txt' from the filename
                inv_doc_dict[i] = f[:-4]
                i+= 1

        tfidf_bow = vectorizer.fit_transform(lst_files)
        search =  csim(tfidf_bow[doc_dict[self.q]], tfidf_bow)

        search = list(search[0])

        i =0
        ans = {}
        for item in search:
            x = inv_doc_dict[i]
            ans[x] = item
            i+= 1
        tfidf_dic = ans
        tfidf = norm_dic(tfidf_dic)
        return tfidf
Esempio n. 2
0
 def qbe(self, s, v, o, a):
     vectorizer = TfidfVectorizer(min_df=1)
     res = {}
     qst = remove_keys_of_empty_value(self.documents[self.q].get_subj_syn())
     len_sq = len(qst.keys())
     qvt = remove_keys_of_empty_value(self.documents[self.q].get_verb_syn())
     len_vq = len(qvt.keys())
     qot = remove_keys_of_empty_value(self.documents[self.q].get_obj_syn())
     len_oq = len(qot.keys())
     qat = remove_keys_of_empty_value(self.documents[self.q].get_adv_syn())
     len_aq = len(qat.keys())
     
     for d in self.documents:
         # subj
         dst = remove_keys_of_empty_value(self.documents[d].get_subj_syn())
         Xs = vconcat(qst, dst)
         if len_sq < 1 or len(dst.keys()) < 1:
             subj_sim = 0.0
         else:
             Xs_vec = vectorizer.fit_transform(Xs)
             subj_sim = np.average(csim(Xs_vec[0:len_sq],Xs_vec[len_sq:]))
         # verb
         dvt = remove_keys_of_empty_value(self.documents[d].get_verb_syn())
         Xv = vconcat(qvt, dvt)
         if len_vq < 1 or len(dvt.keys()) < 1:
             verb_sim = 0.0
         else:
             Xv_vec = vectorizer.fit_transform(Xv)
             verb_sim = np.average(csim(Xv_vec[0:len_vq],Xv_vec[len_vq:]))
         # obj
         dot = remove_keys_of_empty_value(self.documents[d].get_obj_syn())
         Xo = vconcat(qot, dot)
         if len_oq < 1 or len(dot.keys()) < 1:
             obj_sim = 0.0
         else:
             Xo_vec = vectorizer.fit_transform(Xo)
             obj_sim = np.average(csim(Xo_vec[0:len_oq],Xo_vec[len_oq:]))
         # adv
         dat = remove_keys_of_empty_value(self.documents[d].get_adv_syn())
         Xa = vconcat(qat, dat)
         if len_aq < 1 or len(dat.keys()) < 1:
             adv_sim = 0.0
         else:
             Xa_vec = vectorizer.fit_transform(Xa)
             adv_sim = np.average(csim(Xa_vec[0:len_aq],Xa_vec[len_aq:]))
         res[d] = s * subj_sim + v * verb_sim + o * obj_sim + a * adv_sim
     if self.norm:
         answer = norm_dic(res)
     else:
         answer = sort_dic_desc(res)
     return answer