Esempio n. 1
0
def _like_filter(df, q):
    assert_len(q, 3)
    op, column, raw_expr = q

    if not is_quoted(raw_expr):
        raise_malformed("like expects a quoted string as second argument", q)

    regexp = unquote(raw_expr)

    if not regexp.startswith('%'):
        regexp = '^' + regexp
    else:
        regexp = regexp[1:]

    if not regexp.endswith('%'):
        regexp += '$'
    else:
        regexp = regexp[:-1]

    # 'like' is case sensitive, 'ilike' is case insensitive
    case = op == 'like'

    try:
        return df[column].str.contains(regexp, case=case)
    except AttributeError:
        raise_malformed("Invalid column type for (i)like", q)
Esempio n. 2
0
def _prepare_arg(df, arg):
    if isinstance(arg, basestring):
        if is_quoted(arg):
            return unquote(arg)

        return getattr(df, arg)

    return arg
Esempio n. 3
0
def _add_stand_in_columns(df, stand_in_columns):
    if not stand_in_columns:
        return df

    for column_name, stand_in_value in stand_in_columns:
        if column_name not in df:
            if stand_in_value in df:
                df.loc[:, column_name] = df[stand_in_value]
            else:
                dtype = _get_dtype(stand_in_value)
                stand_in_value = unquote(stand_in_value)
                arr = numpy.full(len(df), stand_in_value, dtype=dtype)
                df.loc[:, column_name] = pandas.Series(arr, index=df.index)