def activate_client( self, client: Optional[FractalClient], ) -> Tuple["FractalServer", FractalClient]: """ Activate the connection to the chosen qcarchive instance or spin up a snowflake when requested. Parameters ---------- Notes ----- This can be a snowflake server or a local qcarchive instance error cycling should still work. """ if isinstance(client, FractalClient): # we can not get the server from the client instance so we just get info return client.server_information(), client else: from qcfractal import FractalSnowflake # TODO fix to spin up workers with settings server = FractalSnowflake(max_workers=self.max_workers) print(server) client = server.client() return server, client
def test_cached_fractal_client_snowflake(): from qcfractal import FractalSnowflake snowflake = FractalSnowflake(start_server=False) client = cached_fractal_client(snowflake.client().address) assert client is not None
import qcportal as ptl from qcfractal import FractalSnowflake import pandas as pd import argparse parser = argparse.ArgumentParser() parser.add_argument("-d", "--dry-run", action="store_true") args = parser.parse_args() SNOWFLAKE = args.dry_run if SNOWFLAKE: snowflake = FractalSnowflake() client = snowflake.client() else: client = ptl.FractalClient.from_file() print(client) # The new subset you want to add. dataset_name = "TODO" ds = ptl.collections.ReactionDataset(dataset_name, client=client) # Add the paper ds.data.metadata["citations"] = [ ptl.models.Citation( bibtex=""" TODO """, acs_citation="TODO", url="TODO", doi="TODO", )
def execute_with_snowflake(self, input_paths, output_directory, season, ncores=None, memory=None, dataset_name='Benchmark Scratch', delete_existing=False, keep_existing=True, recursive=False): """Execute optimizations from the given SDF molecules locally on this host. Optimizations are performed in series for the molecules given, with `ncores` and `memory` setting the resource constraints each optimization. Parameters ---------- input_paths : iterable of Path-like Paths to SDF files or directories; if directories, all files SDF files in are loaded, recursively. output_directory : str Directory path to deposit exported data. season : str Benchmark season identifier. Indicates the mix of compute specs to utilize. ncores : int Number of concurrent cores to use for each optimization. dataset_name : str Dataset name to extract from the QCFractal server. delete_existing : bool (False) If True, delete existing directory if present. keep_existing : bool (True) If True, keep existing files in export directory. Files corresponding to server data will not be re-exported. Relies *only* on filepaths of existing files for determining match. recursive : bool If True, recursively load SDFs from any directories given in `input_paths`. """ from openff.qcsubmit.factories import OptimizationDatasetFactory # fail early if output_directory already exists and we aren't deleting it if os.path.isdir(output_directory): if delete_existing: shutil.rmtree(output_directory) elif keep_existing: pass else: raise Exception( f'Output directory {output_directory} already exists. ' 'Specify `delete_existing=True` to remove, or `keep_existing=True` to tolerate' ) # get paths to submit, using output directory contents to inform choice # for the given specs, if *any* expected output files are not present, we submit corresponding input file if keep_existing: in_out_path_map = self._source_specs_output_paths( input_paths, SEASONS[season], output_directory, recursive=recursive) input_paths = [] for input_file, output_files in in_out_path_map.items(): if not all(map(os.path.exists, output_files)): input_paths.append(input_file) from time import sleep import psutil from tqdm import trange from qcfractal import FractalSnowflake # start up Snowflake server = FractalSnowflake(max_workers=ncores) client = server.client() fractal_uri = server.get_address() # get paths to submit, using output directory contents to inform choice # for the given specs, if *any* expected output files are not present, we submit corresponding input file if keep_existing: in_out_path_map = self._source_specs_output_paths( input_paths, SEASONS[season], output_directory, recursive=recursive) input_paths = [] for input_file, output_files in in_out_path_map.items(): if not all(map(os.path.exists, output_files)): input_paths.append(input_file) # submit molecules self.submit_molecules(fractal_uri, input_paths, season, dataset_name=dataset_name) df = self.get_optimization_status(fractal_uri, dataset_name, client=client) progbar = trange(df.size) complete = 0 while not self.stop: df = self.get_optimization_status(fractal_uri, dataset_name, client=client) # write out what we can self.export_molecule_data(fractal_uri, output_directory, dataset_name=dataset_name, delete_existing=False, keep_existing=True) # break if complete complete_i = df.applymap( lambda x: x.status.value == 'COMPLETE').sum().sum() progbar.update(complete_i - complete) complete = complete_i if complete == df.size: break sleep(10) # one final export, just in case some completed since last write self.export_molecule_data(fractal_uri, output_directory, dataset_name=dataset_name, delete_existing=False, keep_existing=True) # stop the server and all its processes #parent = psutil.Process(server._qcfractal_proc.pid) #for child in parent.children(recursive=True): # child.kill() #parent.kill() server.stop()